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Abstract

With the ever increasing role of computerized machines aietg, the need for more ergonomic and faster
Human Computer Interaction (HCI) systems has become arratipe. HCI determines the effective utiliza-
tion of the available information flow of the computing, conmnication, and display technologies. We explore
vision based interfaces in particular, and present in soatailcbur efforts towards developing what may be
called 'accessory-free’ or, at any rate 'minimum accessaotgrfaces.

We have developed a robust method to find the fingertip podattion in a dynamic changing foreground pro-
jection in varying illumination on arbitrary backgrounch@ overall performance of the system is fast, accurate,
and reliable.

This dissertation basically aims at the development of gefitly robust algorithms to detect the position of
different parts of the hand by a visual band segmentatiooga®carried out under the highly varying illumi-
nation conditions resulting from the projector output onaahitrary background. This is a computationally
efficient computer vision system for recognizing hand gestuThe system is intended to replace the mouse
interface on a standard personal computer to control agifgit software in a more intuitive manner. The
system is implemented in C code with no hardware-acceteraffhe main goal is to detect finger gestures
without the requirement of any specified gadgets such asrfingekers, colored gloves, wrist bands, or touch
screens. The long term objective is to facilitate in the fetgraphical interaction with mobile computing
devices equipped with mini projectors instead of converatialisplay screens. These are expected to be simul-
taneously communication and computing devices designedrigtime, anywhere use’ with no assistive tools
whatever. Technologically, this requires the visual or B detection of the finger gestures. Our approach
deals with exclusively visual detection of the shape ofuision on the front side projected background and
recognition of the trajectory of multiple salient pointstbé intrusion contour. Gestures can then be defined in

terms of derived multi-trajectory parameters such as jposivelocity acceleration, curvature, direction, etc.
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Chapter 1

Introduction

1.1 Introduction in HCI

Human-computer interaction (HCI) is the study of interactbetween people (users) and computers. It is
often regarded as the intersection of computer sciencegvimmlral sciences, design and several other fields
of study. Interaction between users and computers occuteatser interface (or simply interface), which
includes both software and hardware; for example, chaisoteobjects displayed by software on a personal
computer’s monitor, input received from users via hardvpemrpherals such as keyboards and mice, and other
user interactions with large-scale computerized systeris as aircraft and power plants.

Recently, a significant amount of effort has been dedicatdtie field of HCI for the development of user-
friendly interfaces employing voice, vision, gesture, anber innovative I/O channels. Human-computer
interaction is a discipline concerned with the design, @atibn and implementation of interactive computing
systems for human use and with the study of major phenomenausing them. In the past decade, studies
have been widely pursued, aimed at overcoming the limitataf the conventional HCI tools such as keyboard,
mouse, joystick, etc. Evolution of user interfaces shapeshange in the human computer interaction. With
the rapid emergence of three dimensional (3D) applicatiiesneed for a new type of interaction device arises.
HCIl in the large is an interdisciplinary area as depicted igyife.lt is emerging as a speciality concern within
several disciplines, each with different emphases: coermdience (application design and engineering of
human interfaces), psychology (the application of thesoiecognitive processes and the empirical analysis of
user behaviour), sociology and anthropology (interastibetween technology, work, and organization), and

industrial design (interactive products).
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Figure 1.1: Human Computer Interaction

1.2 Evolution in HCI in General

There are certain techniques for hand and finger gesturgmémm for Human Computer Interaction. These
techniques have been using some gadgets or some sort ghassisools. For example a visual way to in-
teract with the computer using hand gestures, involved @is@ @mni-directional Sensor [1], which makes
the system costly and is not very easy to use. Many researbhge studied and used glove-based devices to
measure hand location and shape, especially for virtuityetn general, glove-based or wrist band- based
devices [2] measure hand postures and locations with higbracy and speed, but they aren’t suitable for
some applications because the cables connected to themotrdst unfettered hand motion. Some have also
used hand gesture recognition in which the camera was péafd meters away [3], but this can’t be used for

direct interaction with computer system in the more commaoides of computer use.

(h]

Figure 1.2: Grabbing omnidirectional sensor and captuiigger image simultaneously[1]

Later on, single- and multitouch technologies, essemtialich-based, were used for human computer
interaction which used devices like touch screen (e.g.,peder display, table, wall) or touchpad, as well
as software that recognizes multiple simultaneous toudfitoBut this again required use of an externally

provided Multi Touch Hardware and specific systems intedfawith it. The techniques used mostly were
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Figure 1.3: Wrist based device to measure hand location[2]

(h]

Figure 1.4: Hand gesture recognition with camera placeevattietres[3]

amongst the following: Frustrated Total Internal Reflext{BTIR), Rear Diffused Illlumination (Rear DI) such
as Microsoft's Surface Table, Laser Light Plan (LLP), LEyht Plane (LED-LP) and finally Diffused Surface
lllumination (DSI)[4-6].

Later certain optical or light sensing (camera) based solatwere used. The scalability, low cost and ease
of setup are suggestive reasoning for the popularity ofcapsolutions. Overhead cameras, Frustrated Total
Internal Reflection, Front and Rear Diffused llluminatibaser Light Plane, and Diffused Surface lllumination
are all examples of camera based multi-touch systems. Hablese techniques consists of an optical sensor

(typically a camera), infrared light source, and visuabfesck in the form of projection or LCD [7, 8].

A few techniques used Infrared Imaging for building an ifdee. Such techniques employ infrared cam-
eras, infrared light source, IR LED’s with few inches of diarysheets, baffles, compliant surfaces etc. for
proper operation[10]. All these types of Multi touch dedeesed for HCI require complicated setups and so-
phisticated devices which make the system much more castlgifficult to manage. Some of the methods use
some augmented desktop which involves lots of setup andfisulli to carry [20]. Similarly, infrared cameras

were used to segment skin regions from background pixelsdardo track two hands for interaction on a 2D
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Figure 1.5: (a)The cross-sectional view of the tabletopldis system, and the configuration of camera and
projector. (b) The system control of our tabletop displaingsoth hands.Implementation of Multi-touch
Tabletop Display for HCI[4]

(h]

Figure 1.6: Multi-Touch Sensing through Frustrated Tatétitnal Reflection[5]

tabletop display. Their method then used a template majchpproach in order to recognize a small set of
gestures that could be interpreted as interface commanusewr, no precise fingertip position information

was obtained using their technique [23].

After sometime, techniques using Stereo Vision came inist&xce but didn’t gain much popularity be-
cause of certain drawbacks like the fact that the setup regsjgome complex calibration and the subject needs
to adjust according to the needs of the camera, which makéfcult to use for real-life situations[11]. Some
have used simple CRT/LCD displays but the capture was dothetwd cameras placed at two different accu-
rate angles [9] which were not suitable for day to day appbos.

Eventually, the techniques which gained popularity westovi based gesture recognition.They involved cer-
tain techniques for hand and finger gesture recognition foneh Computer Interaction. For instance, some
researchers have used their tracking techniques for dgavifor 3D graphic object manipulation [12-15]. This
has led to research on and adoption of computer vision tgabsi One approach uses markers attached to a
user’s hands or fingertips to facilitate their detection|[38hile markers help in more reliably detecting hands
and fingers, they present obstacles to natural interadtigitas to glove-based devices. Another approach is to

extract image regions corresponding to human skin by e¢bkrur segmentation or background image sub-



1.2 Evolution in HCI in General 5

(h]

Figure 1.7: Interaction techniques for 3D modeling on laiipplays[6]
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[h] HGL;RE 1: Examples of the 2-[) gestures

Figure 1.8: FTIR Multi touch detection on a Discrete Digfitiid Sensor Array|[8]

traction or both. Because human skin isn't uniformly cotbaad changes significantly under different lighting
conditions, such methods often produce unreliable segtientof human skin regions. Methods based on
background image subtraction also prove unreliable whefieapto images with a complex background.

After a system identifies image regions in input images, it @aalyse the regions to estimate hand posture.
Researchers have developed several techniques to espoiateng directions of one or multiple fingertips
based on 2D hand or fingertip geometrical features [12, 18ptler approach used in hand gesture analysis
uses a 3D human hand model. To determine the model’s poghis@pproach matches the model to a hand
image obtained by one or more cameras [14, 16-17] Using a 3Bahthand model solves the problem of
self-occlusion, but these methods don’t work well for natar intuitive interactions because they're too com-
putationally expensive for real-time processing and negaontrolled environments with a relatively simple
background.

A few provide a comprehensive survey of hand tracking mesteodl gesture analysis algorithms [18, 25]. But
these are meant for whole-body gestures which are unsaifablcting as a direct interface with the com-

puter or any system for a seated subject. One of the origiaeking systems to focus on articulated hand



1.2 Evolution in HCI in General 6

(h]

(h]

Figure 1.10: A Camera Based Multi- touch Interface BuilderDesigners[10]

motion was presented in [21, 20]. In their system, a 27 degfédeeedom hand could be tracked at 10Hz by
extracting point and line features from greyscale imagesvéver, it has difficulty tracking in the presence of
occlusions and complicated backgrounds, and it requirearaual initialization step before tracking can begin.
From an interaction perspective, most of the hand trackiogkwo date has focused on 2D interfaces. In [24],
a finger was tracked across a planar region using low-costoaeteras in order to manipulate a traditional
graphical interface without a mouse or keyboard. Fingetéfection was accomplished by fitting a conic to
rounded features, and local tracking of the tip was perfarom@ng Kalman filtering. The procedure in [23]

used pose estimation in which just pointing gesture wereatked but it gave a lot of errors in terms of direction.

But when it comes to interface with computers new algorittamd methods have been found out which
can be used for direct interaction with computer using bemlgd subtraction, Kalman filtering, Detection,
Tracking and Recognition [26] but all these techniques thasebackground subtraction used a background
projected system. In such types of systems we again needutersr TFT displays to recognize gestures.
If we want a direct portable interface which can be carriemfrone place to another and makes it much
more easy to use we need to do front side projection using somef projection device. This has in turn led

to involvement of sophisticated background subtractichmégues to be used for Human Computer Interaction.
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Figure 1.11: Real Time Finger-tip Tracking and Gesture Rai®mn[20]

1.3 Motivation

Today, the systems we use for computation, interactiorwsirg etc. are all becoming, or will soon become,
compact in size and more user friendly. In an era where pealypi4 like to carry large gadgets, or complex
setups and assistive tools or accessories with them, wetaeediork our paradigm. It isn’t enough to simply
make the devices smaller and better: to remove the drawlhiaatdhe user will eventually again perceive in the
existing systems, we need to start with the premise thatgbeaarries at most one device apart from his body.
The HCI must retain all possible flexibility, usable anywdeunder all sorts of conditions and must provide
effectively both input and output functions with a minimufrhardware. Since any computing-communicating
device must have a visual output, we need some sort of disiyboards are still the only foolproof means
of text input, so they must be accommodated somehow. So geimting device. This is likely to remain the
case until speech recognition technology improves corssidg from the present state of the art.

Another thing to keep in mind is that the interfaces shoultblaecost, both to make them easy to buy and less
painful to lose. Easy availability often outweighs conaeoii accuracy with many users. Before we proceed
further with the implications of these constraints, we wislpresent some of the past and ongoing work on
HCI over the last few years. Our own overiding theme has beemetke HCI technology 'appropriate’ and low
cost.

With the extensive proliferation of low cost cameras overldst few years, the automation of many tasks that
require visual sensing or intervention has received a basbdHCl has now come to get its share of benefits
from the camera. The other side of a camera is the projectichacan be considered the inverse transducer
to the (now) humble camera. Projectors can serve as vistmhiation display devices, as structured light
sources, and as a vehicle to virtual input devices. Withgsrialling in the recent past, they are on the way
to becoming humble as well. Recent research in projectoreca systems has overcome many obstacles to
deploying and using intelligent displays for a wide rangapplications. Significant progress has been made

in projected displays that utilize a camera to monitor ptgd imagery as well as to monitor the surface onto



1.3 Motivation 8

which it is being projected. There is an increase in resohytbrightness and contrast ratio. Blending of pro-
jected imagery with underlying surface characteristics dffered unique and profound capabilities. With the
wider use of new gadgets like camera-projector equippéghkehes, the business of projector-camera systems

is suddenly (or will soon be) in the mass consumption domain.

(h]

Figure 1.12: New Era systems

(h]

Figure 1.13: E- Garbage

Hence in the future, we envisage a time when personal comgpwit no longer use a mouse, keyboard
or monitor. The monitor picture will be projected by a minbjactor (already commercially available) to-
wards any arbitrary, reasonably flat surface. The user wél his/her bare hands and fingers to interact with
the objects in the projected dynamically varying image. Sthe fingers will directly serve as mouse, and
by projecting a picture of a keyboard (only when requirelg, iser can even 'type’ on the virtual keyboard.
Thus, the functions of monitor, keyboard and mouse are Bidanto the single projected image thereby re-

ducing the hardware required and hence the enormous E-@awidach is increasing at a rapid rate day by day.
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1.4 Overview of Dissertation

The present invention aims at the development of suffigienthust algorithms to detect the position of differ-
ent parts of the hand by a visual band segmentation processctaut under the highly varying illumination
conditions resulting from the projector output on an adsitrbackground. The main goal is to detect finger
gestures without the requirement of any specified gadgetsasifinger markers, colored gloves, wrist bands,
or touch screens. The long term objective is to facilitatéhm future graphical interaction with mobile com-
puting devices equipped with mini projectors instead ofvemrional display screens. These are expected to be
simultaneously communication and computing devices desidor 'anytime, anywhere use’ with no assistive
tools whatever. Technologically, this requires the viswrdR band detection. Our approach deals with exclu-

sively following two steps:

1. Dynamic background Subtraction under varying illumiotupon arbitrary background using the Re-
flectance modeling technique that is visual detection otiape of intrusion on the front side projected

background.

2. Detecting the contour of the hand and fingers and thereplyiag some basic algorithms to detect the
trajectory of multiple salient points of the intrusion couat. Gestures can then be defined in terms of

derived multi-trajectory parameters such as positiorgaigf acceleration, curvature, direction, etc.

Hence these two steps combine to give us the final output. A®eia case of the above applied algo-
rithms is the Paper Touchpad which functions as a virtualsadar a computer, with requirement of a single
webcam. The position of the finger tip detected in the secteyl af the above defined algorithm is mapped
through homography mapping onto the remote display to sitawd cursor.

Chapter 2 deals with the the literature survey in backgraudraction,Explanation of basic concepts required
to develop the algorithm and Experimental setup.

Chapter 3 describes the algorithm for reliable intrusiotedion in dynamic front projection under varying
illumination upon arbitrary background using reflectanaedeiling

Chapter 4 discusses the method for Finger gesture andudétriécognition along with description of the type
of gestures.

Chapter 5 deals with application of the above algorithnes fikper touch pad and laser pointer mouse.
Chapter 6 explains the Results and Discussions of algosidmmd applications explained in chapters before.

Chapter 7 Summarizes and concludes the dissertation wsttrigdon of future scope.



Chapter 2

Basic Requirements and Literature

Survey

2.1 Literature Survey-Background subtraction

Identifying foreground regions in single or multiple imagis a necessary preliminary step of several com-
puter vision applications in object tracking, motion captar 3D modelling for instance. In particular, several
3D modelling applications optimize an initial model ob&dhusing silhouettes extracted as foreground image
regions. Traditionally, foreground regions are segmenteter the assumption that the background is static
and known beforehand in each image. Background subtracteghods usually assume that background pixel
values are constant over time while foreground pixel vakay at some time. Based on this fact, several
approaches have been proposed which take into accountplioinformation: greyscale, colour texture or
image gradient among others, in a monocular context. Forumiiorm backgrounds, statistical models are
computed for pixels. In order to obtain robust results, ¢hi@atures that are insensitive to illumination vari-
ations should be developed for distinguishing the imagegéa caused by moving objects from the changes
caused by illumination variations, so that backgroundrauibn strategies can still work. Based on the fea-
ture types that are used, these methods can be classifigtiiegocategories: those using textures, those using
colour, and those combining both of them. Several statistiiodels have been proposed to this purpose, for
instance: normal distributions used in conjunction with Mahalanobis distance [27], or mixture of Gaussian
to account for multi-value pixels located on image edgestwrimging to shadow regions [28,37]. In addition to
these models, and to enforce smoothness constraints oggeimgions, graph cut methods have been widely
used. After the seminal work of Boykov and Jolly[29], manyidatives have been proposed. GrabCut reduces

the user interaction required for a good result by iteratipémization [30]. One of the researcher proposed
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a coarse to fine approach in Lazy Snapping. It provides a osenface for boundary editing [31],while some
exploit the shape prior information to reduce segmentagioar in the area where both the foreground and
background have the similar intensities [32]. The curraaph cut based methods shows good results with
both static images and videos, but user interaction are offguired to achieve good results.

All the aforementioned approaches assume a monoculand@rtd do not consider multi-camera cues when
available. An early attempt in that direction was to addestenformation, i.e. depth information obtained
using 2 cameras, to the photometric information used fasifigation into background and foreground [33].
Incorporating depth information makes the process moresplhowever it does not account for more than 2
camera consistencies. A method which estimates the siiteoafean object from the unknown background has
also been implemented [34]. They exploit the relationstapween a region of an image and the visual hull.
The approach requires however good colour segmentatime freground regions are identified based on the
regions. Sormann applied the graph cut method to multie/ wegmentation problems [35]. They combine
the colour and the shape prior for robust segmentation framnaplex background but user interactions are
still required. But all these methods consider backgrownet a static one; hence these approaches can’t be

applied to the new era systems.

2.2 Projector camera system

Projection systems can be used to implement augmentetyrealiwell as to create both displays and inter-
faces on ordinary surfaces. Ordinary surfaces have vargiitectance, color, and geometry. These variations
can be accounted for by integrating a camera into the piojesystem and applying methods from computer
vision. Projector-camera systems became popular in theeesyand one of the popular purposes of them is
3D measurement. The only difference between camera anelgboojs the direction of its projection. 3D scene
is projected onto the 2D image plane in camera; and 2D pattgorojector is projected onto 3D scene. The
mathematical theory of the projective geometry is simifacamera and projector. Then, a straight-forward
solution for projector calibrations is using camera califom methods, which generally requires 3D-2D pro-

jection maps. In this dissertation we have used projectmeta system to design a new era system.

2.3 Calibration using planar homographies

The planar homography is a non-singular linear relatignsletween points on planes. The homography be-

tween two views plays an important role in the geometry oftipld views. Images of points on a plane in one
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Figure 2.1: Projector camera system

view are related to corresponding image points in anothev by a planar homography using a homogeneous
representation. This is a projective relation since it afdpends on the intersection of planes with lines. The
homography transfers points from one view to the other asey twere images of points on the plane. The
homography induced by a plane is unique up to a scale factbisatetermined by 8 parameters or degrees of
freedom. The homography depends on the intrinsic and sitrparameters of the cameras used for the two
views and the parameters of the 3D plane. Thus, the mappipgiots on a two-dimensional planar surface to

the imager of our camera is an example of planar homogragte/céncept is shown below:

.

A x
L7 image /
A coordinates

\x.

camera
coordinates

1}
object plane
‘IQ coordinates

=

Figure 2.2: Points on planar surface

Planar homography between two views can be determined bipdjisdfficient constraints to fix the (up to)
8 degrees of freedom of the relation. Homography can be astghfrom the matching of 4 points or lines or
their combinations in general positions in two views. Eaditehing pair gives two constraints and fixes two
degrees of freedom. It is possible to express this mappiterins of matrix multiplication if we use homoge-
neous coordinates to express both the viewed point Q andihegon the imager to which Q is mapped. If

we define:
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q=[xy1"Q=[x,Y,z," (2.1)

then we can express the action of the homography simply as:

g=sHQ (2.2)

Here we have introduced the parameter s, which is an anpirale factor (intended to make explicit that

the homography is defined only up to that factor). It is cotieerally factored out of H.

The algorithm applied to find out this homography matrix iswh in the diagram. There are 3 transfor-

mations required for the conversion where Mext, Mproj, M&ffnt, M are all conversion matrices.
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Figure 2.3: Review:Forward Projection

1. The first set of conversion that is the world to camera fansation requires rotation and translation of

Ry to P

2. Hence the perspective matrix equation for the cameradawates are as shown in fig.2.5:

(2.3)

3. The second set of conversion s from film coordinates telgi@ordinates which includes two conversion

matrices as shown in fig 2.6.
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Figure 2.5: Perspective matrix equation(Camera coore#)at

4. Hence the projection of planar points on surface is as shioig 2.7 :

The final derivation of the above algorithm is described Wwelgth all the required translation, rotation
compensation to get the final homography matrix H shown ini§.
Seeing the last equation we can conclude that we need 3 gaténds in both the plane to be mapped and the
target plane to find the 9 coefficients of Homography matrat thh11 ,h12 ;h13 ,h21 ,h22 ,h23 ;h31 ,h32 and
h33 and apply to this to any arbitrary point to get the final pegppoint.

2.3.1 Applications

Here are some computer vision and graphics applicationgthploy homographies:

1. Mosaics (image processing):Involves computing honyalges between pairs of input images and Em-

ploys image-image mappings
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2D affine transformation from film
coords (x.v) to pixel coordinates (u.v):
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Figure 2.7: Projection of points on planar surface

2. Removing perspective distortion (computer vision):&ees computing homographies between an im-

age and scene surfaces and Employs image-scene mappings

3. Rendering textures (computer graphics):Requires apgplyomographies between a planar scene sur-

face and the image plane, having the camera as the centasje€ion and Employs scene-image map-

pings:computing planar shadows (computer graphics)

2.4 Spectral Response

Also called Spectral Reflectance. Reflectivity is the fiattdf incident radiation reflected by a surface. In

general it must be treated as a directional property thatfisation of the reflected direction, the incident

direction, and the incident wavelength

- Grefl(/\) (2.4)

P()\ ) B Gincid (/\ )
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Figure 2.8: Projection of planar points

where,Gref) (A) andGincig (A) are the reflected and incident spectral (per wavelengtahsity.

Reflectance refers to the fraction of incident electromégmewer that is reflected at an interface. The

reflectance is thus the square of the magnitude of the refilgcil he reflectivity can be expressed as a complex

number as determined by the Fresnel equations for a singe, lahereas the reflectance is always a positive

real number.

In certain fields, reflectivity is distinguished from reflaate by the fact that reflectivity is a value that ap-

plies to thick reflecting objects. When reflection occursrfrinin layers of material, internal reflection effects

can cause the reflectance to vary with surface thicknessed®igfty is the limit value of reflectance as the

surface becomes thick; it is the intrinsic reflectance ofsiindace, hence irrespective of other parameters such

as the reflectance of the rear surface.
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The reflectance spectrum or spectral reflectance curve iglohef the reflectance as a function of wave-

length.

2.4.1 Surface Type and reflectance

Going back to the fact that reflectivity is a directional pedp, it should be noted that most surfaces can be

divided into those that are specular reflection and thogeatieadiffuse reflection.

For specular surfaces, such as glass or polished metattiéfliewill be nearly zero at all angles except at

the appropriate reflected angle.

For diffuse surfaces, such as matte white paint, reflegtigiuniform; radiation is reflected in all angles

equally or near-equally. Such surfaces are said to be Laraber

Most real objects have some mixture of diffuse and speceldeative properties.The variable output of
a light-sensitive device is based on the color of the liglkiidant upon it. Radiant sensitivity is considered
as a function of wavelength i.e. the response of a device ¢enmhto monochromatic light is a function of
wavelength, also known as spectral response. It is a meae$atihg the physical nature of change in light to

the changes in image and color spaces.

Recent computational models of color vision demonstrateitis possible to achieve exact color constancy
over a limited range of lights and surfaces described bylineodels. The success of these computational mod-
els hinges on whether any sizable range of surface speeti@tances can be described by a linear model with
about three parameters. A visual system exhibits perfestaet color constancy if its estimates of object color
are unaffected by changes in ambient lighting. Human colsion is approximately color constant across
certain ranges of illumination, although the degree of calunstancy exhibited changes with the range of
lighting examined. When the lighting and surface spece#iéctances in the scene are approximately those
of the limited ranges, the color estimates are approximateirect. Analyses of two large sets of empirical
surface spectral reflectances indicate that a finite-diroaaklinear model with three parameters provides an

essentially perfect fit.

Spectral response on the plane which projection takes piatbe spectral response on the intruding object
differs giving proof of intrusion. We have used the concdpteflectance modeling in our work. The reflec-

tivities of various objects like hand, arbitrary backgrduthe surface etc creates different models which are in
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turn used for foreground detection under varying illumioat Using these concepts we develop an algorithm

which uses reflectance properties to detect the intrusion.

2.5 Experimental Setup

Gestures are captured by the system through the use of & sued camera facing towards the hand of the

user. The videos used as input in the dissertation have bhet¢nisder the following constraints:

1. Surface propertiesThe area intended for projection should be as flat as pessitd non shiny i.e..Lambertian.

Its reflectance spectrum should differ sufficiently fromttbBhuman skin.

2. Uniform Illumination Ambient light can be nonzero, preferably non-specular @fngn intensity that
does not dominate the projector illumination. Projectiomilination should have an intensity that is sig-
nificantly higher than the ambient. In instances of regioherg both ambient and projector illumination
are zero, resulting in very dark regions, intrusion detegtand hence, all the subsequent operations will

fail.

3. Bounded depthWhile capturing videos, the light intensity reflected by ttingers should be nearly
constant to avoid abrupt intensity changes due to intrgsimeurring too close to the camera/projector.
This is ensured by keeping the hand and fingers close to thegtion surface at all times. In other
words, the depth variation across the projection surfacaduhe gesturing action should be a small

fraction of camera/projector distance.

4. The optics of projector and camera are kept as nearly @-axd coincident as possible to reduce the

shadow and parallax effects

In addition, we have the following constraints that arediecital to the implementation.

1. Each finger gesture video should be brief and last for neerttan about 3-4 seconds. Longer gesture
times will delay the identification of the gesture as ideadifion and appropriate consequent action is

only possible after each gesture performed completes.

2. We have used an image size of 640 x 480 pixels because fzgsr while improving spatial resolution

of the gestures, would increase the computational burdehadversely affect real time performance.

3. The video sequences are stored in AVI format for pre pigings
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4. At maximum, 2 fingers were used to make a proper sign. Thigelhvaries from signer to signer and
programmer to programmer. More the skin region, more is timedexity of the coding for tracking the

motion of the fingers.

The experimental setup is as shown in the figure 2.9:

Figure 2.9: Experimental setup of the invention: 1-Pra@e@tScreen on which random scenes are being
projected and hand is inserted as an intrusion and 3-Camevading the screen.



Chapter 3

Intrusion Detection in Varying Projector

llumination

3.1 The Preliminary Approach

In the process of arriving at a method that effectively aodicour goals, we first describe an approach that
is more preliminary, makes more assumptions about the @mvient such as that no ambient illumination is
present (an unrealistic assumption). Further it realllgsloot constitute what may properly be termed re-
flectance modelling in the rigorous sense, as surface andeféctance models are not estimated. Thus the
performance of the preliminary .approach we present insiision is markedly inferior under even compliant
conditions,and places more restrictions upon the enviearimOn the other hand, we do choose to present it
in some detail because this method was actually first impieaasbefore the more refined approach we finally
develop was realized. It also has some pedagogic value da®dtly addresses some of the most important
challenges of the problem. Extracting intrusion based dorémage segmentation or background subtraction
often fails when the scene has a complicated backgroundyarahuc lighting. In the case of intrusion moni-
toring, simple motion detection may be sufficient, such aetHan color modeling. But variations in lighting
conditions, constantly changing background and came@aae settings complicate the intrusion detection
problem. It is often necessary to cope with the phenomendtuofination variations as it can falsely trigger
the change detection module that detects intrusions.&untbtion detection as a means of intrusion detection
may also fail in the scenario we plan to work in, where the acknd can be dynamic, with moving entities
flying across the screen at times. The information in eackl bathe RGB color space of the video sequences
activates our pixel wise change detection algorithm in theeoved input frame inspite of a continuosly chang-

ing background. This is achieved by recursively updatimgthckground on the basis of projected information
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and seeking conformance to each reference frame. Ordinggces can have space varying reflectance, color,
and geometry. These variations can be accounted for byratieg a camera into the projection system and
applying methods from computer vision. The methods culyéntuse are fundamentally limited since they
assume the camera, projector, and scene as static.

Image sequences with dynamic backgrounds therefore oftesecfalse classification of pixels. It is crucial
to track moving intruding objects accurately in a clutteredl environment, because illumination changes are
unavoidable in the real world. These changes may occur initoor scene when the sun is blocked by clouds
or in an indoor environment when a light is turned on or off.day, projectors are widely used in meeting
rooms, which may also affect illuminations greatly due te thhanges of slides. In this dissertation we focus
on situations when light intensity changes suddenly. I, fdgs dissertation is primarily concerned with es-
tablishing effective intrusion detection under highlyyiag and dynamic, but known illumination.

In our proposed system, the videos are sent by the projectostreen which is further captured by the cam-
era, in the camera output we were able to detect and trackngabjects even in the presence of highly
varying projector illumination and continuously varyingdkground.Thus, the projector and the camera work
in a closed loop.intrusions are detected as disturnbantbs ioperation of the calibrated closed loop system.
Conventional intrusion detection systems involve a priglary off-line training phase, separated from the

recognition phase.

3.1.1 Training / Learning phase

1. Before we start our learning phase we need to assume thatrdfector screen surface has complete

uniformity.
2. Purered, green and blue colors are sent via the projentaraptured by the camera for a sehdfames.

3. The camera outputis not pure red, green or blue. Herey puee input has all its corresponding response
RGB components non zero. This is on account of an imperfdot balance match between projector

and camera.

4. The mean as well as the variance for each RGB output compémeevery individual pure input is

determined.

5. Single Gaussian surfaces of the output are formed. Fosimplicity we take the mean, maximum and

minimum values only.

6. Formation of color bias matrix.
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3.1.2 Calibration of colors for projector camera system

Since the color values which are projected and the ones venécbaptured from the camera dont match (shown

in fig 3.1) we carry out color calibration.

(a) . {b) . {f.

Figure 3.1: Projected output for RGB alongwith camera oufipu(a)Red (b)Green (¢)Blue

Overn frames

Considering the red input only:

1. Find the mean red, mean green and mean blue of the outpghtforframes.
2. Find the maximum and minimum for each red, green and bltgubérom the n frames.

3. Find the difference between maximum and the mean valuevieny RGB output component for the red

input which gives the deviation.
4. Follow the same procedure for green as well as blue input fames.

The projected RGB values are represente@®®yG® andBP . These values when projected and captured by
camera are represented by new values as shown below in esateigpectively for the red, green and blue input

where R (t),R2(t) andR2(t) are the red, green and blue output as seen from the camera.

Now for detecting the intrusion blob we need to calculaterttean and maximum values for each input

RGB component

For red:

Rur, Rug andRuy, gives mean values for rgb output of red input.

Ry — SkoRe(t) 3.1)

~ nx framewidth« frameheight
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Figure 3.2: Matrices depicting the various values
_ SkoRE(L)
Rl = o Framewidth: frameheight (3.2)
_ SkoRR(L)
Rilo = nx framewidth« frameheight (3.3)
Xr, Xo, Xg gives difference between maximum to mean value for red,gaee blue components.
Xg = Rihax— Rig (3.5)
Xp = Riax— Rilb (3.6)
whereR!, ., ,RhaxR2 .« are the maximum red green and blue components for the red inpu
For green:
Gur, Gug andGpy, gives mean values for rgb output of green input.
_ YkoGe(t)
CHr = framewidth: frameheight 3.7)
n g
Gy = Tk0Gc(t) (3.8)

nx framewidth« frameheight
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TR0 GR(t)

Gup = - - 3.9
Ho nx framewidth« frameheight (3.9)
Yr. Yo, Yg Qives difference between maximum to mean value for red gaee blue components.
Yr = G:nax_ Gir (3.10)
Yg = Ghax— GHg (3.11)
Yo = Ghhax— G (3.12)
For blue:
Bur, Bug andBpy, gives mean values for rgb output of blue input.
_ Y k0Bs(t)
BHr = 1 Framewidth: frameheight (3.13)
Ha = N+ framewidth« frameheight '
P~ 1% framewidths frameheight '
Z, 7y, Zg Qives difference between maximum to mean value for red,gaed blue components.
Z = Brr'nax_ By (3.16)
L= B%"nax_ By (3.17)
Z = Bfax— B (3.18)

Now we have the mean values and deviation for each compohesd,agreen and blue input and hence we

can formulate the color bias matrix.
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3.1.3 Color Bias Matrix

This matrix is formed by the mean values and deviations i @dithe red, green and blue inputs and outputs.
The matrix is as shown in fig 3.3:

This matrix is used to calculate the expected values by paify matrix multiplication with the known input.

4 A

RptyEx, Rligtx, Ruptxy «—— output for red input
GLy, Gligty, Giyxy, «—— output for green input
Buzz, Blu,=z, Buy=z, «+—— output for blue input

N

Figure 3.3: Color Bias Matrix

3.1.4 Total maximum deviations in RGB

The total deviation for each component is the sum of deviatiovariance at each input. To find these values

we need to follow the equation given below:

Var(R) =deviation due to red input + deviation due to grequuin deviation due to blue input

varR) = o(R) =% +Yyr+ % (3.19)

Similarly,

var(B) = o(B) =xp+ Yo+ 2 (3.20)

var(G) = 0(G) =xg+VYg+ 24 (3.21)
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Each red green and blue will have their individual Gaussiadefs that can be represented as shown in the
figures 3.4-3.6:
The equation and graph of of the Gaussian model is as depicfied3.7:
According to the Statistical Gaussian models obtained @l can do background subtraction by defining
a range of around@ around the mean which constitutes the background and thewabtained outside that

range is considered to be intrusion(fig 3.8).

Now we take each red, green and blue component of the obseakeel of each pixel and apply these
equations 1 and 2 on it to detect the intrusion where k is ataah®/hich is obtained by trial and error aod

is the variance and expected values ared) expgreen and exgplue of the respective RGB component.

Observedvalug (expectedvalug« g))thanitisbackground (3.22)

Observedvalue (expectedvalug o))thanitisintrusion (3.23)

3.1.5 Matching frames of the projected and captured videos

In the experiment conducted we fixed the no of frames in bogitucad and projected video and hence cali-

brated and matched the captured and projected videos.

e Projected video has 100 frames between two black frames
e Captured video has 500 frames between two nearest black$ram

e Result:1 black frame of projector was equal to 5 black frafreaptured video

3.1.6 Finding expected values

e Form a video with manually inserted black frames after ed®@ frames.

Project the video

Convert it into number of frames

Every pixel of every single frame is now decomposed into {iBBRromponents

These RGB values are then normalized by dividing each by 255

Now we multiply this normalized RGB with the color bias matid get the expected values
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For any single pixel p(i,j) of the projected video,let théueof RGB components be given Hy, G, B]T.To
calculate the expected value in the absence of intrusiomagd to do matrix multiplication of the pixels RGB
values and the color bias matrix. Let the final expected &floethe red, green and blue be esqul, expgreen,
exp.blue then the equation becomes as in fig 3.9: This expected i@bkent for 5 frames of the camera output
frames.

The RGB values of every pixel of the captured frames are nkantand compared with the expected values as
given before in eqns 3.22 and 3.23. the values of k can be elddmkhit and trial methods. The value which
gives best result can be used for thresholding. After thedtiein of intrusions, the pixels with intrusions are
given the value255 255, 255" and those where intrusions are not detected are given V@l0eg " ,resulting

in the formation of an intrusion blob in a binary image.

3.1.7 Steps for finding the observed values
¢ Interpolate and resize the captured video to projectedbvidiepixel matching.

e Convert the captured videos to frames

Every pixel of every single frame is now decomposed into {iBBRromponents

Every expected values per frame found earlier is sent torbdsaof the captured video

Intrusion detection is done according to the equations 12and

Equations are derived which relate the image coordinatih®inamera to the external coordinate system.

3.2 The Reflectance Modelling Method

Reflectance modeling represents the more refined approatie feroblem of intrusion detection in highly
varying and dynamic illuminationin the presence of nearstant non-dominant ambient illumination. We
now launch into a discussion of this method in a systematicnmaa The main aim of the problem was detec-
tion of events that differ from what is considered normaleTormal in this case, is, arguably, the possibly
highly dynamic scene projected on the user specified subiatiee computer through the mini projector. We
aim to detect the intrusion through a novel process of reftexe modeling. The session begins with a few sec-
onds of calibration which includes generating models ofttaed, the surface, and the ambient illumination.
Subsequently, we proceed to detect the hand in constarghygiimg background caused by the mixture of rel-
atively unchanging ambient illumination and the highlywiag projector illumination under front projection.

This kind of detection requires carefully recording the eaanoutput with certain constraints followed by the
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learning phase and projector-camera co-calibration teimidie no of frames per second and number of pixels

per frame. This is then executed with the steps explainezhbel

3.2.1 Calculation of expected RGB values and detecting intision at initial stages un-

der controlled projector illumination

This includes the following set of steps:

1. Recording and modeling surface under ambient (ambigimtittig is on and projector is off). This defines

a model saysa , which is surface under ambient lighting and is true for amy ef arbitrary surface.

2. Now hand is introduced on the surface illuminated by théiant lighting and a model for hand is
obtained saya , which is hand/skin under ambient light. This is done thitothge following steps: first
the region occupied by the hand is segmented by subtraetima common Gaussian mixture model for

all the sample pixels of the hand available over the spadeedidreground and over all the frames of the

exposure.

3. Hand is removed from the visibility of camera and the prtgeis switched on with just white light. This
is followed by observing and modeling of the surface in ambilight in addition to the white light of

projector, which can be represented 8 .

4. Now surface in projector light is found out by differengiB,p andSa. The equation is as follows:

$=[RLE" (3.24)

This specifies the green, red and blue component of the suufader projection

F=F-K (3.25)
S=S-% (3.26)
F=Fe-SR (3.27)

5. Hand is introduced inside this scene that is when ambigit is on and projector is displaying white

light. This is new model of hand which iap captured in ambient light and projector white light.



3.2 The Reflectance Modelling Method 29

6. Hence we get the model of the hand in projected white kgghiyhich is obtained in the same way &s
Hp = [HR,HE.HE]" (3.28)

This specifies the green, red and blue component of the suufager projection

HR =HR—HR (3.29)
HS =Hgp — HE (3.30)
HE =HE>—HE (3.31)

It must be note that while all the other models of the surfauden different illumination conditions are

functions of position, i.e., pixel-wise models, oty andHp are position invariant

7. Now project the known changing data on the surface undsgrehtion by camera. Let us assume the
data which is being projected is D[n]. But camera receivesstim of the reflections of the data being

projected and the ambient lighting from the surface.

8. Normalization of the modeldp andSs is done to obtain values which are less than or equal to one by
dividing each Red, Green and Blue component by 255, whidteistaximum value that each component

can reach.
9. Now we find out the expected values of the dynamic backgtdaging projected, seen through the
camera by performing matrix multiplication of D[n] aisd followed by addition ofS, .

Shew= D[N+ S+ S (3.32)

where,

Shew= [S?ewa §ewa ﬁew] T (3-33)

The RGB values of every pixel of the captured frames are n&kent@nd compared with the expected

values as given before in eqns 3.22. and 3.23 specified above.
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3.2.2 Luminance compensation

The method estimates the illumination conditions of theeobsd image and normalizes the brightness after
carrying out background subtraction. This was done by cpace transformation.

The RGB color space does not provide sufficient informatiooua the illumination conditions and effect of
such conditions on any surface. The color space also hassihe of the luminance and chrominance properties
not been separated. A transformation is performed on the RBEs by applying a transform matrix onto the
image set. The transformation changes the representdtithe dmage to an YCbCr color space. The Y
component threshold was then applied to enhance the segoarfurther by using the intensity properties of
the image. Threshold segmentation was implemented as shetip to decrease the details in the image set
greatly for efficient processing. Hence we calculate lumagaat each pixel and then calculate the new value
for k the deflection coefficient at each pixel according tovhlkeie of luminance. This was done by developing

a linear relationship between luminance and k :

Knews = (Slopex L) + (.82) — (slopex Limin) (3.34)

whereknew is the factor by which the old value of k must be multiplied #Wimerical values used were arrived

at by hit and trial method.
0.06

(Lmax— I-min)

L-Luminancelmin - Minimum Luminance for all the pixels in the franhg,ax- Maximum luminance for all the

slope= (3.35)

pixels in the frame Hence,
Knews = K Knews (3.36)

3.2.3 Dominant color compensation

After the luminance compensation another type of adjustrizeperformed.This compensates for different
white balance settings in the camera and the projector arqubfsible inbuilt white balance adaptation by the
camera. The value of k was adjusted according to the domamdmit so as to increase the sensitivity according

to the color whose value is maximum.

R+G+B

knewe = (3xDomcolor) 4-0.9 (3-37)
where, Domcolor-Dominant color for that particular pixel
Hence final value of constantk is:
Knewt (3.38)

Kfinal = ot
final kneV\E
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3.2.4 Intrusion detection using the skin reflectance modelsawell as the surface re-

flectance model in tandem

Skin detection is an important step in hand detection. Ortbeprimary problems in skin detection is color
constancy. Ambient light, bright lights, and shadows clesting apparent color of an image. Different cameras
affect the color values as well. Movement of an object carsedlurring of colors. Finally, skin tones vary
dramatically within and across individuals. In the pastfedent color spaces have been used in skin segmen-

tation.

Although skin colors of different people appear to vary caevide range, they differ much less in color
than in brightness. In other words, skin colors of differpabple are very close, but they differ mainly in
intensities and this variation across individuals and dampan be as much due to illumination variations as
due to skin tone differences .

But all these models cannot be applied in a dynamic backgrao we have performed modeling of the skin
by matrix multiplication of the normalized RGB values in tim@delHp with D[n], the data being projected,
followed by addition oH, .

Hnew= D[n] * Hp + Ha (3.39)

where,
T
Hnew = [Hrﬁzewa Hr?ewv Hr?evv} (3-40)

The net outcome of the above calculation are the values &egbét the region of the hand skin pixels
during intrusion in the combination of ambient lighting afmdleground projection on the hand. Now these
values can be used to detect the blobs for the fingers of thetdvatering the frames by detecting skin regions
manipulated by the models obtained earlier.This comphbtesliscussion of method of reflectance modeling
and the algorithm is shown in figure 3.10.

The various models are also depicted using figures 3.11-3.16

3.2.5 Shadow Removal and other Processing

Shadows are often a problem in background subtraction se¢hey can show up as a foreground object under
segmentation by change detection. A shadow may be viewedemmaetrically distorted version of the pattern
that together with the pattern produces an overall digiditgire. Shadows can greatly hinder the performance
level of pattern detection and classification systems.

There are a number of possible methods for the detectioneandval of image shadows. In our method

we employ the concept that the point where shadows are catit@aame ratio between the RGB components
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expected in the absence of intrusion to those observed présence. Hence the red, green and blue compo-
nent ratios are calculated at each point in the area whetesioh is detected and this ratio is used to determine

shadow regions where these ratios is consistent acrossm®R, G,

After removing the shadow, Noise removal algorithm is agghbbn the image to remove both salt and pep-

per and Gaussian noise using:aémedian filter and gaussian filter respectively.

This is then followed by application of connected comportechinique by performing foreground cleanup
in a raw segmented image.This form of analysis returns thaired contour of hand removing the other

disturbances and extra contours.

3.2.6 Applications

This algorithm can be applied in numerous ways.Certain itimnd may be relaxed to get attractive applica-

tions:

e When the front projection is absent ie.. when no dynamic oiteMight is being projected on to the
screen.In this case we can design systems like paper todichigaal keyboard, virtual piano etc. These

applications just have arbitrary background.

e Considering a case of back lit projection where dynamic talteing projected at the back allows us to

design a system where we can directly interact with the roonitscreen.
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Figure 3.10: Algorithm to detect intrusion using reflectanwodelling
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Figure 3.13: Plane and arbitrary surface in ambient andmjmprojection
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Figure 3.16: Hand on plane and arbitrary surface in ambieghilynamic projection



Chapter 4

Finger Gesture Recognition

After detection of the binary images by techniques outlimethe previous chapters, we need to detect the
finger tips and the type and attributes of the gestures. Tieodithis project is to propose a video based
approach to recognize gestures (one or more fingers). Thathlg includes the following steps and is shown

in Figure 4.1.

4.1 Contour Detection

Contour detection in real images is a fundamental problemany computer vision tasks. Contours are distin-
guished from edges as follows. Edges are variations in éitiefevel in a gray level image whereas contours
are salient coarse edges that belong to objects and regiordhdes in the image. By salient is meant that the
contour map drawn by human observers include these edgesyaare considered to be salient. In edge detec-
tion we extract the contours of the detected skin regionkerbinary image obtained after noise removal. The
boundaries are extracted by removing the interior pixelpixgl is set to 0 if all its 4-connnected neighbours

are 1, thus leaving only the boundary pixels off. There aralgferent edge-finding methods:

e The Sobel method finds edges using the Sobel approximatitne tderivative. It returns edges at those

points where the gradient of | is maximum.

e The Prewitt method finds edges using the Prewitt approxandt the derivative. It returns edges at

those points where the gradient of | is maximum.

e The Roberts method finds edges using the Roberts approrimtatithe derivative. It returns edges at

those points where the gradient of | is maximum.
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Figure 4.1: Algorithm to detect finger gesture after intoumsiletection

e The Laplacian of Gaussian method finds edges by looking foy emssings after filtering | with a

Laplacian of Gaussian filter.
e The zero-cross method finds edges by looking for zero crgssifter filtering | with a filter you specify.

e The Canny method finds edges by looking for local maxima oftheient of . The gradient s calculated

using the derivative of a Gaussian filter.

Although algorithms like the Canny edge detector can be usdithd the edge pixels that separate different
segments in an image, they do not tell you anything abouttkdges as entities in themselves. The next step
is to be able to assemble those edge pixels into contours.nfoapis a list of points that represent, in one
way or another, a curve in an image. This representation eatifferent depending on the circumstance at
hand. There are many ways to represent a curve. Contourdsmaberepresented by sequences in which
every entry in the sequence encodes information about tradiém of the next point on the curve. Contours

are sequences of points defining a line/curve in an imagdiggtipn of contour detection algorithm in Opencv
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leads to detection of the boundary of hand and fingers.

4.2 Curvature Mapping

Curvature is the amount by which a geometric object deviates being flat, or straight in the case of a line,
but this is defined in different ways depending on the confElxis may be of two types:

(a)Extrinsic curvature and (b) Intrinsic curvature

There is a key distinction between extrinsic curvature chtis defined for objects embedded in another space
(usually a Euclidean space) in a way that relates to the saafiaurvature of circles that touch the object, and

intrinsic curvature, which is defined at each point in a Rieman manifold.

The primordial example of extrinsic curvature is that of tlei, which has curvature equal to the inverse
of its radius everywhere. Smaller circles bend more shaaplgt hence have higher curvature.
The curvature of a smooth curve is defined as the curvatute o$culating circle at each point.Curvature may
either be negative or positive.The standard surface ge@seif constant curvature are elliptic geometry (or
spherical geometry) which has positive curvature, Eualidgeometry which has zero curvature, and hyper-
bolic geometry (pseudosphere geometry) which has negatixature. The exmaple of positive and negative

curvature is shown Fig 4.2:

Points of positive

Curvature

Points of negative

curvature

)

Figure 4.2: Positive and negative curvatures being shovair

Applying these concepts we calculate curvature at eactht poihe contour by applying the usual formula

for signed curvature(k) calculation:
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k= Lyxa (4.1)
(X2 +y?)2
wherex andy gives the first derivative in horizontal and vertical ditent y" andx  are the second

derivatives in the horizontal and vertical direction.

4.3 Positive Curvature extrema extraction

Determining the highest positive corner points.This iselby two methods:

One method finds out the maximum positive peaks of the signedhture calculated in the step above and
other method finds the corner points by computing second/ateres which is explained in the paragraph
below. In case of more than one positive curvature pointdrobst equivalent magnitude of curvature, we
classify the gesture to be multiple finger.

Along with detection of corner points by curvature calcigiatvhich are one of the most importanttraceable
features, we also by find them by computing second derivatiiehe most commonly used definition of a
corner was provided by Harris. The Harris corner detectbaised on the local auto-correlation function of a
signal;where the local auto-correlation function meastine local changes of the signal with patches shifted
by a small amount in different directions.This definitiotige on the matrix of the second-order derivatives
of the image intensities. We can think of the second-ordevaké/es evaluated at each point of an image as
forming new second-derivative image. Second derivativesiaeful because they do not respond to uniform
gradients. The Harris corner definition has the further athge that, when we consider only the eigenvalues of
the autocorrelation matrix, we are considering quantttias are invariant also to rotation, which is important
because objects that we are tracking might rotate as welloa® nThis terminology comes from the Hessian
matrix around a point, which in two dimensions, evaluatestiitocorrelation at the point for the Harris corner,
we consider the autocorrelation matrix of the second déviwamages over a small window around each point.

Both of these matrices are shown in below:

_ Ix xay
oyox  9y?
ZszKWIJI)%(X"i_Iay—’—J) Z|Z*KW|JIX(X+Iay+J)|y(X+Iay+J)
M(x,y) = =Ko o J=K o (4.3)
Stz W (X LY+ DIy 1y + ) Siz KW (X+ Y+ )
= =<

(Here H is the Hessian matrix, M is the sutocorrelation rreandw; j is a weighting term that can be
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uniform but is oft en used to create a circular window or Geusweighting.) Corners, by Harriss definition,
are places in the image where the autocorrelation matrike@tecond derivatives has two large eigenvalues.
It was later found by Shi and Tomasi that good corners rega$clong as the smaller of the two eigenvalues
was greater than a minimum threshold. Shi and Tomasis metfagchot only sufficient but in many cases
gave more satisfactory results than Harris’ method. Hesg®guthis definition we have used a function which
conveniently computes the second derivatives (using theelSuperators) that are needed and from those in
turn, computes the needed eigenvalues. It then returnisa tise corner points.

The two methods defined above, mainly curvature maximinatitd corner detection are applied jointly upon

each frame, because it was found that corner detection plmakeiced many false positives.

4.4 Segregating the gesture into single or multiple finger

If two corner points are acquired then we put it in the catggdtwo finger gestures whereas if it is just one
then it falls in the category of one finger gestures.

The algorithm easily scales to handle tracking of multiptgéirs. The gestures presently include single finger
gestures like click, frame, pan and rotate as shown in FigaddBtwo finger gestures like drag and zoom as

shown in Fig 4.4.

4.5 Frame to frame fingertip tracking using motion model

Finger tips are then tracked through the frames to traceihteafectory, finger pointing direction evolution,
start and end points of each finger in the gesture performbd i§ done by determining the corner or high
curvature pointin every frame on the retrieved contour gphdang motion model to check if the point detected
lies in the range defined by calculation of movement in thegaleng frames. Tracking motion feedback is used
to handle momentary errors.

Let att = 0, the position coordinates of the corner or finger tip mayxpg/d)

At t =1, the position coordinates of the corner or finger tip mayx@g/{)

Then att = 2, or in the next frame, the position coordinates of the sanggefitip becomes«g,y»)

Vertical velocity,y'zcan be defined as:

Yo=Y2—¥1 (4.4)
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No | Gesture Meaning Signing Mode

1. |Click It is derived from the|It has been taken as
normal clicking action that | tapping the index finger
we do with the mouse on | two times on the surface.
our PCs or on the touchpad | The position of the
of our laptops so as to|tapping signifies  the
open something or knock location of the thing to be

opened

2. | Move This gesture  signifies | This gesture has been

; drawing rectangular region | enacted by drawing a
(a)Frame ; _ _
to focus on  something | rectangulal boundary
when we point to that area | over the surface using
or explaining the view while | ndex finger
taking a snapshot
(h)Move This gesture gives the | This has been enacted by
Arbitary command to move in a|the movement of index
random direcion from its |finger in an arbitrary
current position. direction from its current
position.
3. |Rotate It signifies taking turn in A complete or incomplete
= Clockwise direction. circle is drawn.
(a)Clockwise
(b)Antickckwise | It signifies taking turn in | A complete or incomplete
anticlockwise direction circle is drawn.

4. |Pan This gesture  signifies | This is performed by
movement of window from |usihg index finger and
one place to another middle finger touching

each other.

Figure 4.3: Table to depict type of single finger gestures
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1. |Drag The normal drag signifies | This gesture is enacted with the
moving one thing from |help of a fixed thumb and an
one location to another | index finger that moves from
over the surface. initial to final position over the

surface.

2. | Zoom It signifies the inaease in | Move the index finger and

@)Zoom In r-:.'i_ze _ of what we are |thumb away from each other
viewing

(b)Zoom It signifies the reduction | Move the index fingar and

Out of size of what we are | thumb closer to each other
viewing.

Figure 4.4: Table to depict type of two finger gestures

Similarly the horizontal velocibjzcan be defined as:

x’z =Xo— X1 (4.5)
Now vertical acceleratiog,, can be defined as:

Y2=Y2— V1 (4.6)
Similarly horizontal acceleration can be defined as:

Xy = Xo — X (4.7)

Hence by applying the model above we can predict the cornéreirsubsequent frame. Say the corner now
is (x,y) Then since we know the velocities and acceleratienrtew corner in the subsequent frame can be
predicted to be:

Xnew = X; + X/l + X1 (4.8)

Ynew= y; + y;_ +Y1 (4.9)

4.6 Gesture Classification

The classification and subsequent gesture quantificatiparfermed on the basis of this data. Currently we

are working on a set of 9 gestures for arbitrary backgroumdisdynamic projection under highly varying
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Figure 4.5: Detailed drawing of gestures

Drag

illumination. The gestures are detected on basis of foligwioints and depicted in Fig. 4.5:

Single finger gestures:

Click: When there is no significant movement in the finger tip.

Pan: When the comparative thickness of the contour is almwe shreshold.

Move: When there is significant movement in the finger tip ip dinection.

Rotate: For this slope is calculated at each point and théalotving equations are implemented:

Let at some timé the coordinates of finger tip argy)

Then at some time+ k the coordinates

ared(y’)
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Y-y

a=— (4.10)
X —X

b= )
Y (4.12)

Now when the gesture ends find out how many times lacthdb becomes zero and whats the sum of two.
And by checking these two concepts we find out whether ouuges rotate or not.

Two finger gestures:

Drag: When one of the finger tip stays constant and other fitigenoves.

Zoom out- When the Euclidean distance between the two fimgedecrease gradually.

Zoom-in- When the Euclidean distance between two fingeritipease gradually.



Chapter 5

Applications of the Algorithms

5.1 Paper Touchpad

In many intelligent environments, instead of using conigerdl mice, keyboards and joysticks, people look
for an intuitive, immersive and cost-efficient interactidevice. Here we design and describ a vision-based
interface systems that is a paper touchpad. This is a typatal/mouse for a desktop computer or a laptop
and requires just a camera and a piece of paper with a drawmgpoachpad on it.
We can find many applications where this type of vision-basteifaces is desired. For an instance, in a smart
room, the user wants to control a remote and large displajegrgpgame, but he/she is in a sofa instead of in
front of a computer, and therefore the mouse and keyboaaystigk may not be accessible. Then, what could
he/she do? He/she may pick up an arbitrary piece of papemal drad move his fingers or pens on the paper
to drive a cursor or to type some text, or move the paper torabiite game. Certainly, such an interaction is
made possible by having a camera to look at the user and amalje movement of the paper and the user.Or
maybe we would require different devices at different tililesa piano, calculator, keyboard, mouse etc. What
we need for all this is a single webcam and drawings of theawse instruments. This is the basic conceptual
model and is as shown in the figure 5.1.

The earlier analysis of finger gesture recognition and sitrudetection is of the most general case. Relaxing
one or more of the conditions will still yield situations abresiderable interest such as the paper touchpad
desribed above. Here we simply set the dynamic illuminatiemponent to zero in our equations and solve
them in the presence of ambient lighting and arbitrary bemlgd.

The design of a paper touchpad involves application of tlew@looncept and hence what we need is just that

the camera be repositioned in such a way that it can view thergauchpad.
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Figure 5.1: Conceptual model

5.1.1 Setup
1. A monitor where mouse operations can be shown
2. A piece of paper with drawing of mouse or touchpad on it.
3. AUSB camera: A simple USB web-cam, used for sensing theemewt of hand on the paper touchpad.

4. A processor for receiving the sensed image from the cgrdetarmining the location of the fingertip,
converting it to monitor coordinates, tracing the regionrciinate belongs to and finally communicating

it to the pointer routine of the operating system.

The setup is shown in Fig 5.2

5.1.2 Algorithm

The algorithm is shown in the flowchart in Figure 5.3 and itilies the implementation of the following steps:

e Accurate image screen calibration: if the screen is flat,plla@e perspectivity from the screen plane
and its 2D projection on the image plane is described by a lgoaphy, a 3x 3 matrix defined up to a
scale factor. This matrix can be easily determined from 4spafiimage-screen point correspondences.
The correspondences are not difficult to obtain because we kime screen coordinates of four screen
corners, and their corresponding image points can eitheiebected automatically or specified by the

user.
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Figure 5.2: Paper touch pad

e Background subtraction and hand detection: Here we usedheept of background subtraction by
differencing two frames one captured at the earlier(trajhistages and the other captured when the
finger enters, followed by application of adaptive thrediral. After this, we define an optimum threshold
value of the intensity above which the pixels are considasetb constitute the intrusion. This is then
followed by skin segmentation to obtain the blobs for the dirsgentering the frames by detecting skin
and non skin regions. A colour subspace strategy is adoptéake advantage of its stability under
varying illumination conditions. In this method, the huedagaturation colour subspace (HS) is used.
The main reason is that the HSI colour space closely corretspio the human perception of colour and
it has exhibited more accuracy in distinguishing shadowsredver, the influence of intensity can be
decreased effectively. Hence we take the range of hues iohwhiman skin lies and detect the skin

regions accordingly.

e Robust finger tip location: This is done by contour detecfafowed by curvature calculation(corner
point detection is found unnecessary for these relaxeditions) at each point and detecting the positive

extrema which in turn gives the tip of the finger as explaime@hapter 4.

e Mapping of regions for Left Click , Right Click, Enable andrSitin the touchpad to perform the obvious
actions. Enable is used for activating the basic part oflipad through which the mouse pointer is
moved. When this is disabled we can use the buttons like feftrgght click and scroll. Now these
button are mapped to functions of mouse events in the windibves'y to do the required action. This

step is depicted in figure 5.4:
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PC Interface and event decision making
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Figure 5.3: Implementation of paper touchpad

5.2 Laser Pointer Mouse

When making a large screen presentation from an PC beforaidierece presentation, a wireless remote
controller is usually used if a speaker is away from the PGuél@r, the operability of the wireless remote
controller is inferior to that of a mouse because it is difiteirepositon the mouse cursor quickly and precisely
with the scroll buttons on the remote. This problem can beesbby managing the mouse movement through
a laser pointer adapted to function as a pointing device keidreg can be done using the buttons of a wireless
mouse.This setup is far more convenient to use better thaousen and can be applied to human-computer
interaction applications such as games.

We present a novel LASER-Pointer tracking system for usatgractive presentations. The LASER-Pointers
red dot is meant to draw the audiences attention to a spetfie in a slide. Our system enables presenters

to use the LASER-Pointer as they would a regular mouse cufser system detects the red dot on the screen
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Figure 5.4: Foreground extraction

through a camera and automatically brings the cursor toatadcomplish the position determination accu-
rately, a calibration routine can be executed prior to easkisn of use. This feature paves the way for highly

interactive and dynamic presentations.

5.2.1 Setup

1. A monitor or a projector: A large screen projector must twenected to the computer.

2. Alaser pointer: Presenters usually use them to draw ttieaces’ attention to important issues on the

screen.
3. Aflat surface where information can be projected

4. A USB camera: A simple web-cam must be connected to the stanpsing a USB interface. It is used

for sensing the image on screen and sending it for processing

5. A processor for receiving the sensed image from the cardetarmining the location of the laser spot

with respect to the sensed image, and communicating it tpaheer routine of the operating system.

The apparatus setup is shown in the figure 5.5, 5.6 and 5.7.

5.2.2 Algorithm

e Calibration: In order to move the mouse cursor to the pasitifthe laser spot which was detected from
captured image, the coordinates of the captured image neusthsformed to the coordinates of the
desktop (computer screen) or the projected screen. THaatdin procedures are as follows.

a) A black square with small green triangular corners isldisgd on the screen. Then, the image of the
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Figure 5.6: Laser projector system setup

screen is captured using the image sensor with normal cante.
b) Now by applying image processing techniques, the founewrare detected in that image and are

calibrated to the four known corners of desktop by homogyapétrix calculation.

e Spot detection: We must not only reliably determine the gmsition but also reliably detect whether
or not it is present. The spot recognition software can snest lead to delays of greater than 200
milliseconds. Much slower sampling rates make the movewight cursor appear jerky. Detecting laser
on and laser off is somewhat problematic when using cheag@with automatic brightness control
and low resolution. The automatic brightness controlsiooatly shift the brightness levels as various
room lighting and interactive displays change. This catlsedetection algorithm to occasionally deliver
a false off. Overlooking all these problems the brightest spot is detected using image processing
techniques within a radius of 10 pixels and to avoid jerkshm tnouse pointer we apply some stabling

techniques.
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Figure 5.7: Laser pointer mouse.1 is the image which can $@ajied on the projector and 2 is the webcam
capturing the image 3 represent green corners for calirati

e Coordinate conversion: The point where red dot or lasertpoia detected is then converted to coordi-
nates of the screen using the homography matrix calculateieie

o Interface with mouse pointer: This coordinate is then faisrd with windows mouse operating functions

to move the mouse pointer immediately to the converted doatel.

Hence a function to automatically move the mouse cursoradaber spot in higher illumination environment

is realized. It is also shown that the laser spot can be easdyrobustly detected even if non-uniform pattern

like a desktop of Windows is used as a background.



Chapter 6

Results and Discussions

6.1 Results

We aim to design an accessory free system which is completetable.In view of the above, as the first step
we detect the intrusion successfully using two methods, @rtkem uses directly the statistical modelling
whereas other uses Reflectance modelling followed by finggtuge recognition.

We subsequently have also designed two applications badbe gystem, the paper touch pad and laser pointer

mouse. The results of each of the above are shown below.

6.1.1 Results with the direct statistical method for intruson detection

This method was applied on two sets of data as given below:

1. With full human intrusion: Here body intrusion was degectn dynamic projection over plane back-
ground under varying projector illumination and near zerdgent light. Due to the color of clothes the
detection was not so proper. The valuekafsed here is 0.85. It was observed that with greater values
of k, the intrusions were not detected with ease. And lesseesaitk led to more misdetections. The
intrusions on the screen were detected and blobs were cemhplite above was coded in OpenCV.The

results are shown in fig 6.1

2. With hand intrusion on plane background: Here just thadvaas introduced in the dynamic projection

and by applying our algorithm we detect the intrusion, aswshio Fig. 6.2.
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Figure 6.2: Foreground segmentation with hand intrusiemgustatistical model

6.1.2 Results with Reflectance modeling method of intrusiodetection

This method was applied on the following sets of data:

1. Hand intrusion in a dynamic projection upon plane backgc Figure 6.3

Figure 6.3: Foreground segmentation with hand intrusiamgueflectance modelling on plane background

2. Hand intrusion in a dynamic projection upon arbitrarydgaound: Figure 6.4

The reflectance modelling method gives better results agpaoed to the direct statistical method since we
model not just the surface but also the hand in the ambientrantidynamic projection. The results for plain
and arbitrary background are both equally accurate sinaags of background does not affect the output in

case of Reflectance modelling. Not much effect was seen itvtbebecause our algorithm is invariant to
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Figure 6.4: Foreground segmentation with hand intrusiamguseflectance modelling on arbitrary background

arbitrary backgrounds and skin detection algorithm workeckcessfully in each case as can be seen from the

results.

6.1.3 Finger gesture and attribute recognition

In our algorithm of gesture detection, we have achievedwmggtresults. We found that the primary hurdle in
developing a successful finger tracker was the clean segtimnbf the hand. Once a clean binary image of
the hand is produced using the method of reflectance modgdlieferably, finger detection can be achieved
easily by applying the algorithm explained in chapter 4. (Hpmlly, the system can track the tip positions
of the thumb and fingers effectively thereby detecting thetge and its attributes like direction, trajectory,

velocity, orientation, etc.

1. With plain background:After intrusion detection, we elgtthe finger tips in the intrusion. Depending
upon the number of tips we classify the gesture into the gpfate category:

(a) For one finger gestures: The results are shown in figure 6.5

(b)For multiple finger gestures: Here the various poses offimger gestures are shown in fig 6.6.

2. With arbitrary background: Figure 6.7

6.1.4 Papertouchpad

The paper touchpad is a kind of a virtual mouse used for phogichouse cursor and its functions in any

computer system using an ordinary sheet of paper with a feskings on it. The red dots on the corner of the
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Figure 6.6: Fingertip and type of gesture detection for ipldtfinger gestures on plane background

printout of the touchpad are used for homographic mappihg.figure 6.8 shows the movement of the cursor
and leftclick operation of the mouse. In the first figure we &tk on 'My Pictures’.In the figure besides it,

the window of My Pictures is opened on the display screen asuatr

6.1.5 Laser pointer mouse

This kind of system allows the movement of the mouse pointeatry projector system alongwith the move-
ment of the laser dot on the projection screen. This systacksrthe dot precisely in each frame and any abrupt
change like switching on and off of laser and even abrupt pibgiween two far off positions are easily and
accurately. This also requires an initial calibration ghessmap the screen to the window where laser pointer
moves to get the smooth and accurate movement of the mousar.¢isrworking is shown in the Fig 6.9 and
6.10.
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Figure 6.7: Fingertip and type of gesture detection forlsiregnd multiple finger gestures on arbitrary back-
ground

Figure 6.8: Paper touch pad showing operation of left click

6.2 Discussion

6.2.1 Requirements

The following are the requirements for getting best redoitshe algorithms described in chapters above:
1. Good computing power
2. Relatively light colored videos to be projected.
3. Camera, preferably without AGC and white balance adiptat

4. Camouflage ( same color on foreground and background ) Ineuatoided in case of human intrusion

because a lot of detection problems may arise.
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Figure 6.9: Laser pointer mouse showing the recording wakicd/louse cursor and 2-red dot of laser pointer

6.2.2 Limitation of projector camera system

With the development of projectors, the display quality ssue of concern. The luminance uniformity over
the area of projection is a common problem in projectionldigph We recommend a co-axial projector-camera
system whose geometric correspondence is thus indepeofdeimanges in the environment. To handle pho-
tometric changes, our method uses the errors between thredlasd measured appearance of the projected
image and compensates for them using reflectance modelinkey novel aspect of our algorithm is that
we combine a physics-based model with dynamic feedbackt@ee real time adaptation to the changing
environment. The camera can also assist projection by colwecting a homogeneous colored surface or by
correcting for spatially varying color and texture. A fumgantal assumption we make is that the surface is

Lambertian and if the image looks correct to the camera, vleeggume it looks correct to a viewer.

6.2.3 Limitations due to camera

1. Automatic gain control is abbreviated AGC. It is a featuwtgere the amount of increase is adjusted
automatically based upon the strength of the incoming sighl@aker signals receive more gain; stronger
signals receive less gain or none at all.lt is an adaptiveesy$ound in many electronic devices. The
average output signal level is fed back to adjust the gaimtagpropriate level for a range of input
signal levels. The desired output signal remains essBntiahstant despite variations in input signal
strength.Our algorithm needs to take special care to cdheeatffects of AGC.Thus matters would be

simpler if AGC could be disabled.
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Figure 6.10: Laser pointer mouse showing movement of cuvigbrred dot

2. Intrusions should not be too close to the camera. Bloomilhgccur as it will reflect almost all the light
into the camera causing the camera to go blind(saturated).
6.2.4 Improvements

e We avoid the correspondence problems of projector cametarsyaltogether, by making the optics of
the projector and the camera coaxial or as nearly coaxiabasitfe. This configuration ensures that

all surfaces visible to the camera can also be projected;upere is no possibility of occlusion and no
parallax.

e Camera without automatic gain control and white balancetadian preferable should be used.

e Intrusions should be introduced near the projector scradmat near the camera.



Chapter 7

Conclusion and Future Possibilities

7.1 Conclusion and Summary

In this dissertation, we have developed a vision-based htooaputer interaction system implemented in
OpenCV

By application of our algorithms for both plain and arbitréiackgrounds, we detect the intrusion successfully.
This method is accurate and robust and works over a wide reirg@bient lighting and varying illumination

conditions.The few key points are as follows:

e Since background learning is not required, intrusions @ddiected even with the help of difference in

reflectivity from the screen surface and the intrusions.

e The update of model parameters has to be carried out pixel ariblock wise for both the projected
video as well as the camera captured videos. A one to onespamelence between the pixels is then
taken into consideration. We can thus now apply foregroutidetion technique to figure out the pixels

containing intrusions.

¢ Blending the surface reflectance characteristics and teeofibue modelling for skin detection gives

good results

Secondly we aimed at detection of the finger tips and alsorfgqndit the type and attributes of the gestures per-
formed.We can robustly and accurately track the fingertipéngestures thereby detecting the trajectories and
pointing direction which in turn helps in classification bétgesture precisely into the categories mentioned in

chapter 4. Some key points are:
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e Finding the number of maximum positive comparable highestature points in the gesture is followed

by tracking of the fingertips by application of a motion motteimprove robustness.
e The update occurs frame to frame and the values are verifiaeltyvo models applied for detection.

Based on our main algorithm we have also implemented papehpad as explained in chapter 5 .We set the
dynamic illumination component to be zero in our model toigieshis system as there is no variation in the
background with time.Whenever the paper touch pad is pus¢éowe need an initial calibration phase which
ensures proper working.The delay between the finger moveomethe paper touchpad and the cursor on the
screen is in milliseconds. This aims at replacing the hardwaouse which just contributes to E garbage.
The following implementation have clearly shown high rabess, accuracy and flexibility. Many other ap-
plications are possible like controlling a calculator,miaig with fingers, virtual keyboard, virtual piano and
controlling the display of 3D objects.

Alongwith the above algorithms and applications this disg®n also discusses an implementation of a laser
pointer mouse which can be used in any projector camerarsydtaser may be used to control the mouse

movement on the projected data.

7.2 Applications

This work finds many applications in day to day life for new eystems which can act as both mobile and
computers. The best application is in the making of a humampeter interface (HCI) where the interfacing
devices like keyboard, mouse, calculator, piano etc woeltbme obsolete. It will help in creating a new era
system consisting of a projector-camera combined with agesor which can be used as a computing device
much smaller then any of the existing systems.

There are several factors that make creating applicatioR€ difficult. They can be listed as:
e The information is very complex and inconsistent
e Intrusion detection techniques should be highly effective

e Developers must understand exactly what it is that the eadafgheir computer system will be doing.

7.3 Future Possibilities

e This may be further extended for whole body gestures which Ineaused for sign language recognition

or for robotic and other applications.
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e We may also use an infra-red laser or flood illumination asnaisible 4th channel for detecting more
details of gestures performed and to remove the effectseofifible band varying illumination even

further.

e Extract more information like speed and acceleration froengesture performed and allowing the user

to communicate through these parameters as well.

e As the end result, we aim to design a robust real time systeiohwd¢an be embedded into a mobile
device that can be used without accessories anywhere a fffatswand some shade is available. The
single unit would substitute for the computer/communicate display, keyboard and pointing device

which may require a projector, camera, processor and memory

e We can move on to develop vision techniques to recognizesse®s, instead of just individual gestures
as well as more complicated finger gestures, which can beaa gedp in understanding sign language

better
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