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Abstract

This thesis addresses the problem of reconstructing complex real-world dynamic scenes
without prior knowledge of the scene structure, dynamic objects or background. Previous
approaches to 3D reconstruction of dynamic scenes either require a controlled studio set-up
with chroma-key backgrounds or prior knowledge such as static background appearance or
segmentation of the dynamic objects. This thesis presents a new approach which enables
general dynamic scene reconstruction. This is achieved by initializing the reconstruction with
sparse wide-baseline feature matches between views which avoids the requirement for prior
knowledge of the background appearance or assumptions that the background is static. To
achieve sparse reconstruction of dynamic objects a novel segmentation based feature detector
SFD is introduced. SFD is shown to give an order of magnitude increase in the number and
reliability of features detected. A coarse-to-fine approach is introduced for reconstruction of
dense 3D models of dynamic scenes. This uses joint segmentation and shape refinement to
achieve robust reconstruction of dynamic object such as people. The approach is evaluated
across a wide-range of indoor and outdoor scenes.

The second major contribution of this research is to introduce temporal coherence into
the reconstruction process. The dynamic scene is segmented into objects based on the initial
sparse 3D feature reconstruction of the scene. Dense reconstruction is then performed for
each object. For dynamic objects the reconstruction is propagated over time to provide a
prior for the reconstruction at successive frames in the sequence. This is combined with the
introduction of a geodesic star convexity constraint in the segmentation refinement to improve
the segmentation of complex objects. Evaluation on general dynamic scene demonstrates
significant improvement in both segmentation and reconstruction with temporal coherence
reducing the ambiguity in the reconstruction of complex shape.

The final significant contribution of this research is the introduction of a complete frame-
work for 4D temporally coherent shape reconstruction from one or more camera views. The
4D match tree is introduced as an intermediate representation for robust alignment of partial
surface reconstructions across a complete sequence. SFD is used to achieve wide-timeframe
matching of partial surface reconstructions between any pair of frames in the sequence.
This allows the evaluation of a frame-to-frame shape similarity metric. A 4D match tree



x

is then reconstructed as the minimum spanning tree which represents the shortest path in
shape similarity space for alignment across all frames in the sequence. The 4D match tree is
applied to achieve robust 4D shape reconstruction of complex dynamic scenes. This is the
first approach to demonstrate 4D reconstruction of general real-world dynamic scenes with
non-rigid shape from video.

Email: a.mustafa@surrey.ac.uk
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Chapter 1

Introduction

1.1 Background and Motivation

We live in a 3D world and directly perceive 3D information. Inspired by this, a fundamental
problem of computer vision is to obtain 3D geometric information with the help of computers
and digital sensing devices. This process is called ‘3D reconstruction’. Over the past
two decades there has been extensive research in visual geometry and static 3D scene
reconstruction. Due to the rapid advances in technology as well as decreasing cost of
computing and sensing hardware, the focus of 3D reconstruction has gradually shifted from
3D static structure reconstruction to dynamic scene modeling. A ‘dynamic scene’ is a scene
containing one or more moving objects to be modeled, possibly with shape deformation
over time. Existing systems for dynamic 3D reconstruction from multiple view video use
controlled indoor environments with uniform illumination and backgrounds to allow accurate
segmentation of the dynamic foreground objects. The general case of outdoor dynamic
3D scene reconstruction with uncontrolled illumination and backgrounds remains an open
challenge. Reconstruction of general dynamic scenes is motivated by potential applications
in film and broadcast production, assisted living, surveillance and smart cities/workplaces.

Recent decades have seen increasing use of visual effects in film, television and video
game production. 3D static scene reconstruction from images and video is widely used
in media production to allow addition of graphical elements to generate a photo-realistic
experience for the audience. The line between real images and computer graphics has been
blurred by the introduction of hardware and robust algorithms for static scene reconstruction.
Reconstruction of dynamic scenes such as people in controlled studio environments has
been shown to allow photo-realistic rendering from the reconstructed 3D models. However,
content production requires the ability to exit and manipulate the content as part of the
creative process. The goal is to reconstruct dynamic scene representations which can be
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Fig. 1.1 Pipeline for dynamic scene reconstruction in [62]

rendered with the photo-realism of video and manipulated or edited with the flexibility of
computer generated models. To achieve this requires temporally coherent 4D reconstruction.
Methods for temporally coherent 4D reconstruction have recently been introduced but are
restricted to controlled scenes with known backgrounds or they on work on water-tight
meshes of dynamic objects with full visibility. This thesis addresses the general problem of
reconstruction of temporally coherent (4D) representations of general dynamic scenes from
multiple camera views without prior knowledge of the scene structure. 4D reconstruction
is defined as a temporally consistent representation of the 3D points of entire scene for the
whole sequence over time. The per frame 3D points of the dynamic parts of the object are
connected in time for 4D scene reconstruction.

Previous work in dynamic outdoor scene reconstruction from multi-view images for
sports data was proposed by [62]. A joint multi-layer reconstruction and segmentation
approach was introduced to obtain per frame reconstruction of the scene using the framework
shown in Figure 1.1. Initial coarse reconstruction was retrieved using visual hull from the
segmentation of dynamic objects which was refined using a joint depth and segmentation
optimization framework. Another recent work in dynamic outdoor scene reconstruction
which targets film and broadcast applications for outdoor dynamic datasets was proposed
by [82]. The algorithm is divided in three main stages: Environment modelling; Dynamic
foreground scene reconstruction; and Model composition and rendering. The pipeline is
shown in Figure 1.2. These existing dynamic 3D reconstruction techniques suffer from the
following problems:

• These approaches require accurate segmentation of dynamic foreground objects. Au-
tomatic segmentation techniques fail for complex scenes with dynamic backgrounds,
changing illumination and similar foreground/background appearance and manual
segmentation is a tedious task.
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Fig. 1.2 Pipeline for dynamic scene reconstruction in [82]

• The assumptions of prior knowledge of the scene structure, background and segmen-
tation limit previous approaches to static cameras and controlled environments with
static background and these approaches do not work with multi-view datasets capture
with a network of moving cameras.

• Static background and dynamic foreground are processed separately requiring different
capture technologies and offline processing to estimate the background model. The
method in [82] reconstructs dynamic scene elements from multi-camera views along
with spherical capture for static scene/background to obtain full scene reconstruction.

• Semi-automatic operation: Tasks like segmentation and registering reconstructions
from multiple methods may require manual intervention making the whole process of
scene reconstruction slow.

• These methods give temporally incoherent mesh geometries as an output which makes
it difficult to apply these methods in real-world applications.

The main goal of the research is to is to overcome the limitations of previous approaches and
enable 4D reconstruction of general real-world dynamic scenes.

1.2 Problem Statement

Over the past decades, effective approaches have been proposed to recover 3D dynamic
shapes in indoor laboratory environments with controlled lighting, uniform-colored static
backgrounds and empty viewing space without any visual occluders [19]. However, such
systems cannot be directly extended to an uncontrolled natural environment. A natural
scene is far more complicated with environmental variations, including illumination changes,
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soft shadows cast by clouds, dark shadows cast by trees or dynamic shapes themselves,
visual occluders that are common in outdoor scenes, varying dynamic backgrounds with
clutter such as trees or people, and specular reflections on glassy or metallic surfaces.
Existing approaches in multi-view reconstruction require strong initial prior like knowledge of
background, structure information, assumption of static cameras or foreground segmentation
to obtain reconstruction of dynamic objects for these natural scenes which limits their
applicability. The proposed approach to be developed in this research aims to overcome the
limitations of existing approaches through unsupervised complete dense scene reconstruction
of complex dynamic scenes captured from a network of static or moving cameras. Also the
existing systems for dynamic reconstruction from general outdoor scenes either produce
per frame reconstruction of the dynamic objects or give sequential temporally consistent
geometries which fail in case of large motion. Our aim is to obtain temporally coherent (4D)
dynamic scene reconstruction automatically for partial non-rigid geometries with large and
articulated motion of general scenes from a single or multiple camera acquisition system.
The requirements of the proposed approach are:

• The input to our system is synchronized multi-view videos captured using a network
of multiple static or moving cameras.

• Currently methods for dense scene reconstruction of dynamic scenes requires extra
knowledge like segmentation, depth data or background knowledge. We assume no
prior knowledge of the foreground, background, scene structure or appearance.

• The methods proposed in the literature for 4D scene reconstruction assume rigid
objects or limited motion. Our goal is to obtain temporally coherent reconstruction for
articulated objects with large non-rigid motion and partial surface geometries.

1.3 Methodology

Previously some approaches to dynamic scene reconstruction have achieved the solution
through joint segmentation and reconstruction of the scene. It has been shown that segmenta-
tion and reconstruction are related problems which require simultaneous solution and produce
reliable results [62]. However, existing joint segmentation and reconstruction approaches
use the foreground segmentation to obtain visual hull and background information as prior
to obtain the final results [62, 63]. The visual hull is used as a prior for the reconstruction
of the foreground which is refined using an joint optimization framework. Our aim is to
perform segmentation and reconstruction of the general dynamic scene without any prior on
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Fig. 1.3 Proposed pipeline for 4D general scene reconstruction
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the scene structure, background or segmentation and to use this concept in our framework
we need to initialize the geometry of objects in the scene automatically. To initialize the
joint optimization of the general dynamic scenes automatically without any prior unlike
existing approaches we use the information from the sparse reconstruction of the scene. The
proposed framework is shown in Figure 1.3 with two stages of processing: Scene level which
is performed on the entire scene depicted in dashed red line and Object level is performed on
each object of the scene depicted in dashed green line. The separation of the processing at
scene and object level is to improve the efficiency of the system. Reconstructing the entire
scene in a single minimization is computationally expensive and may not lead to an efficient
solution. Separating the scenes in different objects allows us to retain the reconstruction
of static parts of the scene over-time and reconstruct only dynamic parts of the scene for
consecutive time instants. The stages of the proposed system, illustrated in the figure are
explained below:

• Multi-view videos: We consider synchronized multi-view videos as input to our
system captured from a network of static or moving hand-held cameras. Camera
intrinsic calibration is assumed to be known.

• Feature detection and matching: Sparse 2D feature correspondences are obtained
for the entire scene between multi-view image pairs at each frame.

• Sparse reconstruction and clustering: Camera extrinsics and sparse 3D points are
obtained from the feature correspondences. The sparse reconstruction of the scene
represents different objects in foreground and some information of the background. To
identify various objects in the scene we cluster the sparse 3D points, with each cluster
representing an foreground object. A reliable and uniform initial estimate of sparse 3D
structure is required for salient object identification through clustering which depends
upon the accuracy and number of correspondences obtained from multi-view image
pairs. Existing feature detection approaches result in a highly sparse non-uniform
distribution of scene features and the resulting feature set often results in poor scene
coverage. We introduced a feature detection suitable for wide-baseline matching to
obtain a good estimate with uniform scene coverage in the initial sparse reconstruction
of the scene. This process is performed at scene level for the entire sequence as shown
in the Figure 1.3.

• Initial coarse reconstruction and refinement: Once we have clusters of objects, for
each cluster an initial coarse reconstruction is obtained for all the objects in the scene
for first frame of the sequence. The initialization of segmentation and reconstruction is
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a rough estimate prone to errors. Application of existing joint refinement techniques
on such inaccurate estimate produces unreliable results. Hence the existing state-of-
the-art methods cannot be used directly and there is a need to improve the optimization
framework to obtain an accurate estimate of the objects in the scene and make it robust
to errors in the initialization. The initial reconstruction of the scene is refined using a
joint segmentation and reconstruction refinement framework to obtain complete scene
reconstruction for the first frame of the sequence and a rough proxy of the background
is added.

• Dynamic scene reconstruction and refinement: For consecutive time instants, only
dynamic objects in the scene are identified and reconstructed. The initial coarse recon-
struction is obtained by integrating the information from the mesh in the previous frame
and the sparse cluster of 3D points at current frame. The initial coarse reconstruction
of the dynamic scene is refined using a joint optimization of object segmentation
and reconstruction and is combined with the static scene reconstruction at that frame
to obtain complete scene reconstruction for the entire sequence. We also introduce
temporal coherence and shape information in the framework to achieve reliable results.
The static parts of the scene are retained over time and are fused with dynamic elements
to obtain the final 4D scene reconstruction for the entire dynamic sequence.

• Non-sequential alignment for 4D scene reconstruction: Applications of reconstruc-
tion to film, broadcast and gaming requires temporally consistent geometries. State-
of-the-art approaches in dynamic scene reconstruction either produce per frame re-
construction, frame-to-frame or sequential alignment (errors due to drift and large
motion) or work for water-tight dynamic geometries. To overcome the limitations of
existing methods, temporal coherence is introduced in our framework by using a global
non-rigid non-sequential alignment framework based on the movement and shape of
the dynamic objects in the scene.

1.3.1 Contributions of Research

Our contributions include:

• A novel segmentation based feature detector SFD is introduced in Chapter 3 for accu-
rate wide-baseline matching which gives an increased number of good and repeatable
feature detection for different viewpoints, accurate feature localization and improved
coverage for natural scenes.
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– A comprehensive performance evaluation for wide-baseline matching on bench-
mark datasets of existing feature detectors (Harris, SIFT, SURF, FAST, MSER,
ORB, AKAZE) and descriptors(SIFT, BRIEF, ORB, SURF) is presented showing
improved performance of the SFD detector in terms of both number of features
and matching accuracy.

– Application to scene reconstruction demonstrates an order of magnitude increase
in the number of reconstructed points with improved scene coverage and reduced
error compared to previous detectors against ground-truth.

• An unsupervised dense reconstruction and segmentation of general dynamic scenes
from multiple wide-baseline views is proposed in Chapter 4.

– Automatic initialization of dynamic object initial segmentation and reconstruction
from sparse features is introduced.

– Robust joint refinement of dense reconstruction and segmentation integrating
error tolerant photo-consistency and edge information is proposed.

• Robust spatio-temporal reconstruction and segmentation of dynamic scenes by exploit-
ing temporal coherence and shape information is shown to improve the quality of the
results in Chapter 5.

– A framework for space-time sparse-to-dense reconstruction is introduced to create
a good estimate of initial coarse reconstruction. The initial dense reconstruction
is jointly optimized using geodesic star convexity constraint along with addition
of color information in the minimization framework.

• Robust global 4D alignment of partial reconstructions of non-rigid shape from multi-
view sequences with moving cameras is introduced in Chapter 6.

– 4D Match Trees are introduced to represent the optimal non-sequential alignment
path which minimizes change in the observed shape.

– Sparse matching between wide-timeframe image pairs of non-rigid shape using
SFD is proposed. A novel method to obtain dense 4D surface correspondence
using optical flow guided by sparse SFD temporal matching is introduced.

1.3.2 Thesis Outline

Chapter 1:Introduction
This chapter presents the background of the research problem, motivation, problem statement,



1.3 Methodology 9

methodology and contributions of the research. A list of publications resulting from this
research is also given.

Chapter 2: Literature Survey and Background
Chapter 2 presents a review of reconstruction techniques in static and dynamic scene. Gen-
eral 4D scene reconstruction framework is introduced and an overview of state-of-the-art
techniques at each stage is presented: Data capture, Feature detection and matching, Dense
reconstruction and Temporal coherence. A description of datasets used in this thesis for
evaluation purposes is also included.

Chapter 3: SFD: Segmentation based Features for Wide-baseline Reconstruction
In this chapter we introduce a novel feature detector SFD that produces an increased number
of ‘good’ features for accurate wide-baseline reconstruction. This work was published at 3DV,
2015 [126]. Each image is segmented into regions by over-segmentation and feature points
are detected at the intersection of the boundaries for three or more regions. Segmentation-
based feature detection locates features at local maxima giving a relatively large number of
feature points which are consistently detected across wide-baseline views and accurately
localized. A comprehensive comparative performance evaluation with previous feature
detection approaches demonstrates that: SFD produces a large number of features with
increased scene coverage; detected features are consistent across wide-baseline views for
images of a variety of indoor and outdoor scenes; and the number of wide-baseline matches is
increased by an order of magnitude compared to alternative detector-descriptor combinations.
Sparse scene reconstruction from multiple wide-baseline stereo views using the SFD feature
detector demonstrates at least a factor six increase in the number of reconstructed points with
reduced error distribution compared to SIFT when evaluated against ground-truth and similar
computational cost to SURF/FAST.

Chapter 4: Dense Reconstruction of Real-world Dynamic Scenes
This chapter introduces a general approach to dynamic scene reconstruction from multiple
moving cameras without prior knowledge or limiting constraints on the scene structure,
appearance, or illumination using SFD features introduced in the previous chapter. The
primary contributions of this chapter are twofold: an automatic method for initial coarse
dynamic scene segmentation and reconstruction without prior knowledge of background
appearance or structure; and a general robust approach for joint segmentation refinement
and dense reconstruction of dynamic scenes from multiple wide-baseline static or moving
cameras. Evaluation is performed on a variety of indoor and outdoor scenes with cluttered
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backgrounds and multiple dynamic non-rigid objects such as people. Comparison with
state-of-the-art approaches demonstrates improved accuracy in both multi-view segmentation
and dense reconstruction. The proposed approach also eliminates the requirement for prior
knowledge of scene structure and appearance. This work was presented at ICCV, 2015 [122]
and initial work in CVMP, 2014 [125].

Chapter 5: Temporally Coherent Dynamic Scene Reconstruction
Chapter 5 presents an approach for reconstruction of temporally coherent models of complex
dynamic scenes. The method was published at CVPR, 2016 [123] as oral presentation.
Sparse-to-dense temporal correspondence is integrated with joint multi-view segmentation
and reconstruction to obtain a complete 4D representation of static and dynamic objects.
Temporal coherence is exploited to overcome visual ambiguities resulting in improved re-
construction of complex scenes. Robust joint segmentation and reconstruction of dynamic
objects is achieved by introducing a geodesic star convexity constraint. Comparative eval-
uation is performed on a variety of unstructured indoor and outdoor dynamic scenes with
hand-held cameras and multiple people. This demonstrates reconstruction of complete
temporally coherent scene models with improved non-rigid object segmentation and shape
reconstruction.

Chapter 6: 4D Match Trees for Non-rigid Surface Alignment
This chapter presents a method for dense 4D temporal alignment of partial reconstructions of
non-rigid surfaces observed from single or multiple moving cameras of complex scenes. 4D
Match Trees are introduced for robust global alignment of non-rigid shape based on the simi-
larity between images across sequences and views. Wide-timeframe sparse correspondence
between arbitrary pairs of images is established using SFD. Sparse SFD correspondence
allows the similarity between any pair of image frames to be estimated for moving cameras
and multiple views. This enables the 4D Match Tree to be constructed which minimizes
the observed change in non-rigid shape for global alignment across all images. Dense 4D
temporal correspondence across all frames is then estimated by traversing the 4D Match tree
using optical flow initialized from the sparse feature matches. The approach is evaluated
on single and multi-view images sequences for alignment of partial surface reconstructions
of dynamic objects in complex indoor and outdoor scenes to obtain a temporally consistent
4D representation. Comparison to previous 2D and 3D scene flow demonstrates that 4D
Match Trees achieve reduced errors due to drift and improved robustness to large non-rigid
deformations. This work is to be presented at ECCV, 2016 [124].
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Chapter 7: Conclusion and Future Work
Chapter 7 concludes the work presented throughout this thesis and suggests potential future
research directions.

1.3.3 Publications

The following publications are a result of the work described in this thesis:

• A. Mustafa, H. Kim and A. Hilton; 4D Match Trees for Non-rigid Surface Align-
ment; European Conference on Computer Vision (ECCV) 2016; Poster Presentation.

• A. Mustafa, H. Kim, J.-Y. Guillemaut and A. Hilton; Temporally coherent 4D recon-
struction of complex dynamic scenes; IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR) 2016; Oral presentation.

• A. Mustafa, H. Kim, J.-Y. Guillemaut and A. Hilton; General Dynamic Scene Recon-
struction from Multiple View Video; International Conference on Computer Vision
(ICCV) 2015; Poster Presentation.

• A. Mustafa, H. Kim, E. Imre and A. Hilton; Segmentation based Features for Wide-
baseline Multi-view Reconstruction; 3D Vision (3DV) 2015; Oral Presentation.

• A. Mustafa, H. Kim, E. Imre and A. Hilton; Initial Disparity Estimation using
Sparse Matching for Wide-baseline Dense Stereo; European Conference on Visual
Media Production (CVMP) 2014; Short Paper.

• A. Mustafa, H. Kim, J.-Y. Guillemaut and A. Hilton; Temporally coherent general
dynamic scene reconstruction; IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 2016; To be submitted.

• A. Mustafa, H. Kim and A. Hilton; Segmentation based Features for Wide-baseline
Matching; Pattern Recognition (PR) 2016; To be submitted.





Chapter 2

Literature Survey and Background

The recovery of 3D structure information from image sequences is a fundamental problem
in computer vision. Reconstruction of general dynamic scenes is motivated by potential
applications in gaming, film, broadcast production, surveillance etc. The ultimate goal is
to estimate 3D geometry of real-world scenes captured from distributed static or moving
camera networks. Over the past three decades numerous approaches have been proposed
and evaluated for multi-view reconstruction of static scenes [156]. State of the art 3D
reconstruction systems use different methods like structure-from-motion (SFM), multi-view
stereo, depth maps etc. to generate 3D models of scenes. The estimated shape is commonly
associated with static structures where the scene is rigid. Our research focuses on the more
difficult problem of 3D recovery when the object in the video is non-rigid, that is, its shape can
change through time by deforming or articulating as many objects in the real world, including
people, animals, elastic objects and clothing. However, reconstructing the shape of such
objects from imagery remains an open problem. Approaches have been introduced to obtain
3D models from single or multiple cameras in the scene based on some prior knowledge
of the object structure or deformation. In this work we focus on the videos captured with
multiple static or moving cameras and we seek 3D models to express the time-varying shape
of the objects in the image along with an approximate background reconstruction with no
prior on the background, object structure or appearance. This chapter discusses the literature
in the field of 4D multi-view reconstruction from image sequences focusing on the case of
dynamic scene reconstruction.

2.1 Multi-view Scene Reconstruction

There is an increasing demand of 3D reconstruction in movie industry, gaming and virtual
environments. Existing methods for these application use multi-view cameras to obtain
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3D photo-realistic models of the moving objects in the scenes. Numerous approaches have
been proposed depending on various factors like camera projection model, the type of
correspondences between the images (lines, corners, multi-scale gradient histograms) and
how they are matched (windowed search, tracking, optical flow). These methods are also
dependent on the unknowns in the motion model (calibrated, semi-calibrated, uncalibrated
internal parameters, restricted motions, wide or short baseline) and the unknowns in the
structure (completely free, planar, piecewise planar scenes). Also, the type of the optimization
algorithms (linear, non-linear), timing constraints (batch, online, real-time), and the strategy
to handle robustness and degeneracy issues (M-estimators, RANSAC, planar degeneracies,
probabilistic tracking) define the decision of approaches. In addition to all of the above, a
3D modelling phase must be implemented where photo-consistency, smoothness factors,
occlusions, and specularities are simultaneously taken into account in the ideal case. All the
aforementioned concepts have been extensively studied in the case of static scenes where
multiple views can be captured with a single moving camera referred to as ‘structure-from-
motion’ or multi-camera set-ups using ‘multi-view stereo’. Not surprisingly, such issues are
also relevant for dynamic scenes and a survey was presented in [156]. The input data for these
reconstruction systems is captured using static or moving multi-view cameras, which may or
may not be synchronized or calibrated, an example is shown in Figure 2.1. The deformable
objects in the scene are observed at different angles and reconstructed independently using
information from all video streams. A general solution to multi-view stereo was explained in
[69]. Some approaches perform surface tracking on the per frame reconstructions to establish
temporal correspondences in cases where a complete view of the objects is visible. Often,
these multi-view and temporal correspondence methods are data-driven and makes use of
additional strong prior to obtain a solution. General review on existing techniques in static
and dynamic reconstruction is presented in [106]. The multi-view reconstruction techniques
for dynamic scenes can be broadly classified into four approaches:

Fig. 2.1 Multi-view capture volume and a frame for Odzemok dataset
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Fig. 2.2 Visual hull and Photo-hull from pair of input images of Odzemok dataset

1. Visual-hull: These require a foreground segmentation of the dynamic object of interest
from the background. Reconstruction can be performed using a discrete voxel grid [59]
or exact polyhedral visual hull[49]. An example of reconstruction obtained using
visual hull is shown in Figure 2.2.

2. Photo-hull: Reconstructs the complete scene based on pixel photo-consistency between
views [93, 186]. In practice such approaches require distinct color contrast between
foreground and background limiting their use on natural scenes. An example of
reconstruction obtained using photo-consistency is shown in Figure 2.2.

3. Multiple-view stereo: Stereo matching requires either narrow-baseline between camera
views [156] or prior initialization which can be based on visual hull [165] which limits
practical application to natural scenes. A sub-class of multi-view stereo based on
oriented patch matching approach was introduced [51] which requires a large number
of cameras to produce reliable reconstruction of the entire scene.

4. Multiple view depth maps: Active depth sensors can be used to acquire 2.5D depth
maps from multiple viewpoints which are then fused into a single surface model
[50, 114], but these methods focus on architectural scenes.

Research on multi-view dynamic scene reconstruction over the past two decades has primarily
focused on indoor scenes with controlled illumination and backgrounds. Recent research
has extended this work to outdoor scenes including sports and general environments [63, 77,
82, 170]. Current approaches to outdoor dynamic scene reconstruction exploit strong prior
assumptions to enable segmentation of the foreground objects such as pitch color in sports
or background scene geometry and appearance for general scenes. This research aims to
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overcome the limitations of these assumptions enabling robust multi-view reconstruction of
general dynamic scenes without prior assumptions on scene geometry or appearance and an
example for dynamic dataset is shown in Figure 2.3. The research aims to develop a solution
which addresses the following problems:

1. Uncalibrated multi-view scene acquisition from static or moving camera networks.

2. Challenging outdoor scenes with non-uniform dynamic and repetitive backgrounds.

3. Uncontrolled changing scene illumination.

4. Automatic dense reconstruction of the foreground and background.

5. Reconstruction to output a model with temporally consistent structure and known
correspondences.

This will enable practical reconstruction of general scenes with commodity hardware. Po-
tential applications include entertainment production, surveillance, biomechanics, animal
welfare monitoring and dynamic scene understanding. It is useful to divide scene components
into two categories: dynamic objects such as people, bikes, cars, birds or street vendors
that move about and likely to have the same appearance a single time instant taken at a
particular time and static backgrounds such as buildings, streets, landscaping, or benches
that are visible in many images taken in the same general location and only change slowly in
appearance due to scene illumination, and non-lambertian reflectance.

The remainder of this section reviews the development of multi-view reconstruction
methods for static and dynamic scenes. This review focuses on recent advances moving
towards reconstruction of dynamic scenes in uncontrolled environments. Finally a typical
4D dynamic scene reconstruction pipeline is outlined.

2.1.1 Static Scene Reconstruction

Multiple views of a scene can be used to obtain 3D reconstructions with appropriate as-
sumptions like camera calibration information. Structure can be estimated from a moving
camera or from a multi-camera system at a single time instant. Correspondences obtained
from multi-views are used to recover a geometric model as well as a model of the camera
locations. Different application have various requirements on the reconstruction. A few
applications like navigation and robot localization require estimating sparse 3D points in
the scene while other may require a per-pixel geometry estimate along with a dense surface
reconstruction. For static (rigid) backgrounds, a classic approach to scene understanding is
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Fig. 2.3 Illustration of the required 4D scene reconstruction from dynamic scene Odzemok
dataset as input.

to use structure-from-motion(SFM) and multi-view stereo (MVS) techniques to build up an
explicit model of the scene geometry and appearance. There has been extensive research into
accurate outdoor scene reconstruction from multi-view images [7, 35, 139] a quantitative
evaluation against ground-truth is presented in [167].

Methods in static scene reconstruction are now well developed and work robustly on large
unstructured photo collections ranging from point based reconstructions [51, 103] to line
based SFM [133]. Patch-based MVS [51] generated point based reconstruction from a range
of images by using standard SFM. Recently an alternative faster approach of PMVS has been
introduced in [103]. A full 3D model of streets was reconstructed from 150,000 photos on
Internet using grid computing with 500 cores for 24 hours in [7]. For accurate calibration of
multiple cameras, it is always difficult to accurately calibrate cameras in advance. To solve
this problem bundle adjustment introduced in [26, 177] was used for self calibration system
in [162] and is widely adopted in state-of-the art 3D estimation techniques for calibration.

An accurate reconstruction algorithm for urban or archaeological sites was introduced in
[9], including both geometry and texture, in order to obtain models useful for visualization,
quantitative analysis in the form of measurements at large or small scales and potentially for
studying their evolution through time. Instead of using fixed multiple cameras systems, SFM
can also use video sequences from a moving camera [35, 139, 140]. The basic idea of the
SFM is similar to multi-view reconstruction but it reconstructs 3D positions and the cameras
motions simultaneously by feature correspondence. Uncalibrated 3D structure recovery is
formulated as the joint estimation of the 3D position of the points in space and the pose
and internal parameters of the camera. A variety of SFM strategies have been proposed
including incremental [7, 190], hierarchical [56], and global approaches [94]. These systems
still suffer from robustness, accuracy, completeness, and scalability problems which were
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handled by state-of-the-art improved version of SFM in [155]. They propose an incremental
SFM method which follows a sequential processing pipeline with an iterative reconstruction
component. It starts with feature extraction and matching, followed by geometric verification
to obtain the sparse 3D points.

In [130] a single hand-held RGB camera captures a static scene performing reconstruction
in real-time using GPU hardware and does not rely on feature tracking instead on dense
correspondence. The algorithm creates dense 3D surface model and uses it for dense camera
tracking with whole image registration. This approach gives a high performance, quality and
robustness but it requires a large number of narrow-baseline images [4].

2.1.2 Dynamic Scene Reconstruction

Given the practical importance of dealing with independent motions, there has been an
increased interest in the detection and analysis of such cases. In general the analysis of
dynamic scenes is of course not new in computer vision. The scenes which are subject to
typical vision applications, such as tracking, background modeling, motion segmentation,
contain dynamic elements by definition.

Dynamic shape reconstruction problem is a fundamental and heavily studied area in the
field of computer vision. Methods have been proposed for dynamic reconstruction from
monocular camera sequence [54, 92, 151, 192]. Garg et al. [54] introduced first variational
approach to the problem of dense 3D reconstruction of non-rigid surfaces from a monocular
video sequence. In [151] the whole scene is classified into background and foreground
objects and the motion is modeled as a set of overlapping rigid parts. An approach for joint
inference of 3D scene structure and semantic labeling for monocular video was proposed
in [92]. A dense 3D template of the shape of the object is computed in [192] using a short
rigid sequence and online reconstruction is performed subsequently of the non-rigid mesh as
it evolves over time. However, this work focusses on recovering accurate 3D models of a
dynamically evolving, non-rigid scene observed by multiple synchronized cameras.

Reconstruction of non-rigid dynamic objects in uncontrolled natural environments is
challenging due to the scene complexity, illumination changes, shadows, occlusion and
dynamic backgrounds with clutter such as trees or people. Research on dense dynamic scene
reconstruction from multiple views has primarily focused on indoor scenes with controlled
illumination and backgrounds extending methods for multi-view reconstruction of static
scenes [156] to sequences [178]. In the last decade, focus has shifted to more challenging
outdoor scenes captured with both static and moving cameras.

The two main cues used frequently are the silhouettes of the object of interest and color
consistency information. The former is used to form an approximate 3D shape estimate of
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the original object, the visual hull. The latter is used to reconstruct the scene surfaces via
multi-view stereo triangulation and both the cues are represented in Figure 2.2. Feature points
are detected and matched for multi-view stereo. Many feature detection techniques have
been introduced in the literature to find robust salient features. One of the most commonly
used is the scale-invariant features is the SIFT feature detector [105] due to its performance
on wide-baseline views with large appearance variation. In practice, for dynamic scenes
of people most SIFT feature detections occur on the background or at the boundary of the
silhouette. The latter unfortunately consists of partial foreground and background pixel
information, and thus does not correspond to consistent features from a different view.
Therefore, most of the recovered feature points cannot be used to perform 3D triangulation.
Additional geometric constraints such as surface smoothness are often used to constrain the
reconstruction where image data is inconclusive. A quantitative evaluation of state-of-the-art
techniques for reconstruction from multiple camera views was presented by [156]. Existing
methods generally focus on reconstruction in controlled environments, where the lighting is
constrained and the viewing conditions used to obtain images of objects are optimal. They,
however, face substantial difficulties when brought outdoors or in generally unconstrained
environments. The prominent papers in the literature have been analyzed below:

Silhouette-Based Methods: A common approach to multi-view reconstruction uses the
silhouettes of objects as sources of shape information. A 2D silhouette is the set of close
contours that outline the projection of the object onto the image plane, as well as the
regions inside the contours. Performing foreground/background segmentation of the object of
interest is used to initialize or fit a 3D model as the silhouette provides a strong cue for shape
understanding [59, 185]. The back-projection of the silhouettes from the camera optical
center form generalized viewing cone’s, and intersection of the viewing cones yields an
approximation of the real object. The visual hull [97] refers to the intersected volume with an
infinite number of viewpoints surrounding the object, in analogy to the convex hull of a set of
points. The volume is maximal with respect to the visual silhouettes and the surface elements
are tangent to the viewing rays (lines) along the silhouette boundaries [49]. Visual hull has
been used as a constraint to obtain a high quality reconstruction of the dynamic object.

The ‘visual hull’ has a few characteristic properties. First, it is the maximal object that
is consistent with all the silhouettes from the given viewpoints. This property is sometimes
called ‘conservativeness’ of the visual hull, because the real shape, which is also consistent
with all the silhouettes, is guaranteed to be contained in the visual hull. Secondly, every
viewing cone can exclusively eliminate volumes outside of the cone. However, no matter
how many cameras are used, surface concavities are not recovered, due to self-occlusion.
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There is difference between ‘concavity’ and ‘non-convexity’: a visual hull is able to recover
a ‘saddle region’, which is non-convex. Although the original visual hull concept is based
on an infinite number of views, the above properties still hold for the shape recovered from
finite views and this property is commonly used in practice for reconstruction of a volume
which encloses the object of interest from a finite set of views.

Shape from silhouettes is a particularly good approach if only an approximate model
of the real-world is required and the foreground can be segmented from the background.
The methodology is intuitive and easy to implement. With the advances in computing
powers, systems capturing real-time 3D digital video for dynamic reconstruction in studio
environments are already on the market [3, 48, 110]. Nevertheless, such systems are restricted
to an indoor environment with strictly controlled conditions such as uniform background
of a distinct color allowing foreground segmentation. All such systems demand accurate
silhouette extraction. If any part of a single silhouette were corrupted, due to the exclusiveness
of the viewing cone carving, the corrupted parts would result in incomplete visual hull (which
contradicts the visual hull ‘conservativeness’ property) and would never be recovered even
if the silhouettes from all other views are correctly computed. These methods typically
require minimum of 8 cameras covering the scene but typically 30−60 cameras to get good
approximation of object shape using visual hull.

Unfortunately, so far, there is no automatic solution that reliably produces accurate
silhouettes for natural scenes. Varieties of visual hulls were introduced: [49] presented a
technique to recover the exact representation of the visual hull corresponding to a polyhedral
approximation of the silhouette contour; image-based visual hulls [112], an approximate
view-dependent visual hull to efficiently render novel views without explicit reconstruction;
classic work on ‘Virtualized Reality’ [80]; probabilistic visual hull [61] and safe-hull [118],
the first visual hull reconstruction technique to produce a surface containing only foreground
parts. Probabilistic visual hull methods use generative probabilistic sensor models, derived
by analyzing the dependencies between the sensor observations and object labels which
are assigned to each voxel location in the scene represented by a 3D volume. Bayesian
reasoning is then applied to achieve robust reconstruction against real-world environment. A
Bayesian approach [59] to silhouette estimation is used to compensate for modelling errors
from false segmentation. They model prior density using probabilistic principal components
analysis and estimated a maximum-a-posteriori reconstruction of multi-view contours. This
reconstructs good error-compensated models from erroneous silhouette information, but
needs prior knowledge about the objects and ground-truth training data. Another method
based on multi-viewpoint silhouette images is presented in [95], but it is limited to controlled
lighting and indoor datasets. A fully automated approach [165] is proposed for capturing a
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human’s shape, appearance and motion from multiple video cameras to create highly realistic
animated content(time varying shape and appearance) from an actor’s performance in full
wardrobe based on visual hull and practical issues in designing studio capture systems were
described in [166] including the studio backdrop, illumination, camera configuration and
camera calibration but both focus on studio environment. Approach based on visual hull for
complete outdoor dynamic scene reconstruction was introduced [62, 82].

In conclusion, shape-from-silhouette approaches can generate full 3D reconstruction
of dynamic scenes, but these approaches assume foreground segmentation of the dynamic
objects. They lack in reconstruction fidelity and are sensitive to errors in silhouette extrac-
tion unless large numbers of cameras are used, greater than 50. Therefore more efficient
techniques, in terms of reconstruction quality, are employed to generate 3D models with an
increased level of detail.

Multi-view Stereo: Image-based 3D scene reconstruction without a prior model is a key
problem in computer vision. In the literature, there are several types of methods that are
used to reconstruct 3D points of objects from a set of images. Conventional stereo-based
techniques reconstruct a 2.5D depth image representation from two or more cameras through
a regularized search for image correspondence using a geometric limitation such as the
epipolar constraint. The epipolar constraint simplifies the correspondence search problem, as
it limits the correspondence search region for a given point in one image to a single line in
the other one. Due to these simplifications, stereo vision is a widely used technique in close
range 3D reconstruction. One of the common method to achieve such dense reconstruction
is to employ stereo-matching algorithms, where two images are matched pixel by pixel
by exploiting intensity similarities, ordering constraints and smoothness constraints. A
preprocessing step where both of the images are rectified with a projective transform is
usually performed in order to come up with proper horizontal scan lines for both images.
The stereo reconstruction problem is a relatively old and a well studied field but interestingly
it is still an active research area where the interested reader can find a good review conducted
in [154]. However, these work well for stereo image pair or narrow-baseline images where
pixel by pixel feature matches can be easily retrieved.

Some multi-view stereo algorithms recover 3D surface point locations by triangulating
corresponding visual features seen from different viewing angles [51, 103] and an initial
survey was presented in [139]. Once these sparse critical points are recovered, smoothness
constraints can be applied to regularize the recovery of the whole object surface. Previous
research has focused on problems such as the recovery of the epipolar geometry between
two stereo images [44, 69], and the calibration of multi-camera views [202]. These research
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studies lay the foundation for current work in dense stereo reconstruction and volumetric
modelling. These feature based approaches work well for narrow-baseline images where
there is a large overlap between images and reliable correspondences can be retrieved.
However, robust determination of the corresponding points and, consequently, of disparity
is the central problem to be solved by stereo vision algorithms as matching suffers from
ambiguities for images with uniform surface appearance, depth discontinuities and unknown
surface visibility.

Other methods for multi-view stereo were proposed to handle these errors and wide-
baseline scenes by using volumetric reconstruction techniques for calibrated cameras. These
techniques derive the 3D volume that is consistent with multiple images. A volume repre-
sentation allows inference of visibility and integration of appearance across multiple widely
spaced camera views. A space carving framework to compute the 3D shape of an unknown
scene from multiple images taken at known arbitrarily distributed viewpoints is introduced in
[93]. It estimates the feature correspondences between views using the photo-consistency
measures, that is the resemblance between the pixels/patches in one image to those in the
other image is evaluated to see how well the two correlate. This is different from visual hull
which provides an upper bound on the volume of the scene, and concavities that are occluded
in silhouettes are not reconstructed. Space-carving techniques provide the photo-hull, which
is the maximal volume that is photo-consistent across all visible camera images[93]. A
space carving probabilistic framework for analyzing the 3D occupancy computation problem
from multiple images is introduced in [22]. This framework enables a complete analysis of
the complex probabilistic dependencies inherent in occupancy calculations and provides an
expression for the tightest occupancy bound recoverable from noisy images referred to as
the photo-hull. In [191], two major extensions to the space carving framework are presented.
The first one is a progressive scheme for better reconstruction of surfaces lacking sufficient
textures. The second one is a novel photo-consistency measure that is valid for both specular
and diffuse (Lambertian) surfaces, without the need of illumination calibration. This method,
unlike [22, 93], can deal with surfaces lacking sufficient textures.

In conclusion, the multi-view stereo framework suffers from several important limitations.
The original space carving approach [93] makes hard decisions for the solution to converge.
This limitation is partially overcome in [22]. The choice of the global threshold on the color
variance is often problematic [22, 93]. An attempt to alleviate these photometric constraints
in presented in [191]. Global optimization framework for such approaches was proposed in
[86], thereby addressing some of the shortcomings of classical methodologies. A thorough
survey is given in [156]. Unlike the visual hulls, concave regions can be recovered as long as
feature correspondences in those regions can be triangulated from different camera views.
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Another major advantage of multi-view stereo is that the recovered surfaces are a better
approximation of the shape if triangulation is established for every point on the surface.

However, multi-view stereo algorithms generally work well on highly textured surfaces,
where salient feature points are easy to find and match. In dynamic scene reconstruction
applications, especially human modeling, uniformly colored clothes are common, thus,
it is difficult to find salient features on the person. In the absence of sufficient robust
features, stereo methods, such as [159, 186], have to ‘reduce’ to silhouette constraints with
varieties of smoothness regularization such that the silhouette/visual hull is used as an initial
approximation to constrain the stereo correspondence. In [176], a graph-cut algorithm is used
to recover the 3D shape of an object using both silhouette and foreground color information.
However, the solutions that incorporate silhouette constraints [159, 176] are only viable
when exact silhouettes are available.

The second concern is the computational complexity. Unlike the straightforward visual
hull algorithms which can reach real-time performance, multi-view stereo algorithms usually
involve much slower optimization processes to obtain the detailed surfaces. From the
Middlebury dataset evaluation [4], the fastest GPU accelerated algorithms take tens of
seconds to output a final shape. This is not generally an issue for static scene modeling,
where the reconstruction quality is the main concern. However, for dynamic scene modeling,
these methods are not feasible for real-time applications.

The third concern is the self-occlusion problem. Since the 3D point triangulation requires
at least two views of the same surface point from different perspectives, in order to obtain as
many corresponding features as possible, neighbouring cameras should not be too far apart.
In practice, existing successful multi-view stereo techniques either exploit tens or hundreds of
views of a single static object, such as in [156, 191] which mainly works for static scenes, for
multi-camera systems data volumes and color consistency across views can be an additional
problem for large numbers of views or other approaches constraints the stereo correspondence
using visual hull which requires foreground segmentation [166]. Besides pixel intensity,
pixel color consistency is often used as a multi-view stereo correspondence measure, such as
in [93]. The various color channels contain more information than the pixel intensity and
thus produce more accurate 3D point correspondence. Although many advanced algorithms
have been proposed for camera network photometric calibration as in [82], it is in general a
tedious manual task.

Many recent approaches use a fusion of different reconstruction techniques to accomplish
better reconstruction results. A high quality scene representation via graph-cut optimization
of an energy function combining multiple image cues with strong prior was done in [62].
Optimization to solve labelling problem was done on color, contrast, sparse matching, dense
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Fig. 2.4 4D reconstruction framework

matching and smoothness. A set of oriented points (or patches) covering the surface of an
object or a scene of interests was used for reconstruction and named as Patch-based MVS al-
gorithm [51]. This includes initial feature matching, patch expansion, patch filter, conversion
of the patches into a polygonal mesh model and polygonal-mesh based multi-view stereo
algorithm that refines the mesh. A dense 3D scene reconstruction from multiple images
and simultaneous image segmentation was proposed by [193]. They utilize class-specific
geometry priors for surface orientation and smoothness assumptions in order to improve
the quality of obtained reconstruction and segment a volume of interest into a multi-label
volumetric segmentation framework assigning object classes or free-space labels to voxels.
There are many such methods like [57, 62, 82] to reconstruct a dynamic scene from multiple
fixed cameras. They typically applied stereo algorithms to synchronized video frames of
different cameras and smoothed the estimated disparities of corresponding pixels in the
temporal domain. All these methods raise another concern which is the manual intervention
to get good quality results, making it difficult for real-time applications.

Multi-view Depth Maps: Multi-view depth map approaches acquire multiple depth maps
from 2.5D sensors and fuses them into a single reconstruction like DTAM [130], KinectFusion
[75] and other reconstruction methods [131, 197]. However these methods work in case
of static scenes. Recently RGBD based reconstruction methods were extended to dynamic
scenes in [129]. First system to reconstruct non-rigidly deforming scenes in real-time by
fusing together RGBD scans captured from commodity sensors was proposed. The method
reconstructs scene geometry whilst simultaneously estimating a dense volumetric 6D motion
field that warps the estimated geometry into a live frame to obtain real-time reconstruction of
dyanmic scenes.

2.2 4D Reconstruction Pipeline

There are numerous applications of 3D dynamic scene modeling in our multimedia dominated
modern world. In the movie industry, current motion capture systems have to attach trackable
markers or sensors to the actors to recreate 3D structures and motions into a 4D marker or
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model track i.e. 3D points on the objects are tracked over-time to create a 4D reconstruction
sequence of dynamic scene. This is different to a 4D model where the entire surface is
tracked over time. They are often inconvenient to put on and inhibit performance. The ability
to obtain 3D shape and motion over time (4D) using images alone is therefore an attractive
and desirable alternative. The demand for immersive 3D interactive games would be boosted
by real-time modelling of full 3D human pose. The technology also has applications in the
medical field. It can be used to create models of deforming organs, as well as to replay
disease development over time. Other application areas include sports broadcasting and
commentary, teleconferencing, robot navigation, object recognition, visual surveillance,
digital historic archiving, assisted living and surveillance. In this section a general 4D
reconstruction pipeline is presented to illustrate the steps required and review approaches for
each step. Typical 4D reconstruction pipeline is illustrated in Figure 2.4 and it comprises of:

1. Image Acquisition: The reconstruction process starts with a data capturing step, where
the image of the scene or the object is acquired by a fully calibrated and temporally
synchronized camera or a regular hand-held camera.

2. Feature detection and matching: The images are processed to obtain the correspondence
between the images either using sparse features or dense correspondences. Note that
typically this step is visual hull not feature matching in existing techniques to general
scene reconstruction.

3. Structure Computation: The correspondences are utilized to estimate the 3D dynamic
scene structure including calibration of cameras and 3D points.

4. Temporal Coherence: The raw 3D reconstruction at each multi-view video frame is
aligned over time to estimate a temporally coherent 4D representation using either a
model-based prior or model-free approach.

This section reviews all the stages of general scene reconstruction from multi-view image
sequences.

2.2.1 Data Capture

The most common set-up for a dynamic scene reconstruction consists of multiple cameras
mounted at different fixed locations, looking at a common viewing region, as shown in
Figure 2.5. The number of cameras placed in scene might vary typically vary from 5 to
16. Depending upon the applications cameras can be placed at narrow-baselines(within 10
degrees) or wide-baselines(more than 10 degrees and up to 50 degrees). With the development
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Fig. 2.5 Data capture for IMPART project

in the algorithms and camera hardware, data has been captured using a single moving camera
or a network of moving camera for any dynamic indoor and outdoor scenes. For example,
a camera might be carried around a scene to build a geometric model from the resulting
video or multiple hand-held cameras can be used to shoot the scene. Capturing data indoor
is relatively easy as the capture volume is limited and lighting conditions can be controlled.
In contrast, outdoor scene capture for film and broadcast production requires the following
considerations.

• Large capture volume: Outdoor action capture commonly requires a relatively large
area compared to indoor scenes.

• Natural scene backgrounds: Indoor captures have been performed with controlled
chroma-key backgrounds and relatively static objects in the background, but outdoor
capture will have natural image backgrounds that may be dynamic.

• Uncontrolled illumination: The illumination in the outdoor capture is subject to change
based on the time-of-day and weather resulting in problems like shadows, shading, and
specularities.

• Portable capture equipment: Set-up and reconfiguration of multiple camera equipment
needs to be rapid to accommodate production requirements for principal photography.

• Fast scene motion: Rapid movement in the background like trees, cars etc.

The datasets used for our work is captured with a portable multiple HD camera system.
The camera system comprises high-definition video (HDV) camcorders, Canon XH G1s,
which have f = 4.5 – 90 mm, F/1.6 – 3.5 lens, and three 1/3 in-charge-coupled devices
providing uncompressed HD-serial digital interface (SDI) at 1920×1080 resolution. The
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Fig. 2.6 Illustration of capture volume and a frame for Cathedral dataset

datasets are available online at [cvs]. The cameras can be synchronized during the capture
using time-code generator or later using the audio information. The importance of synchro-
nization is the genlock so that shutter opening is synchronized across views, without this
it is not possible to reconstruct moving objects. In our work timecodes are synchronized
to a master camera in advance. Cameras are then operated in a free running mode using
their internal clocks for synchronization and video is captured to tape. This allows multiple
cameras to be used without cables while maintaining synchronization enabling rapid set-up
and reconfiguration with minimal impact onset. Synchronized multi-view image sequences
can be extracted from the tapes with stored timecode for processing offline. Frame drift
induced by using internal timecode is approximately one frame per hour in our experiments
when cameras are free running, which is acceptable in most applications and can be detected
using [74]. Since the cameras and the genlock synchronization signal generator can be driven
by batteries, this system is fully portable and can produce synchronized multi-view image
sequences of actions in any outdoor environment. In our work we have used various variety
of datasets and all our datasets are publically available at [cvs]. The details are explained in
this section:

• Odzemok: This is an indoor dataset with 8 cameras, 6 static and 2 moving. The
background is cluttered the it is wide-baseline with stable lighting condition. An actor
performs in the centre. Capture layout and example frames are illustrated in Figure
2.1.

• Dance1: This is a wide-baseline indoor dataset with 8 static cameras, cluttered back-
ground, stable lighting and actor performing in the centre illustrated in Figure 2.7.

• Dance2: This is a wide-baseline indoor dataset with 8 static cameras, plane background,
stable lighting and two actors performing in the centre illustrated in Figure 2.7.
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Fig. 2.7 Illustration of a frame with multi-views for Dance1, Dance2 and Office dataset
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• Office: This is a wide-baseline indoor dataset with 8 static cameras, plane background,
stable lighting and one actors performing with a prop table in the centre illustrated in
Figure 2.7.

• Cathedral: This is a wide-baseline outdoor dataset with 8 static cameras, building as
background, repetitive structure, varying illumination and actor in centre shown in
Figure 2.6.

2.2.2 Feature Detection and Matching

Finding reliable correspondences between images is a fundamental problem in computer
vision applications such as object recognition, camera tracking and automated 3D recon-
struction. General scene reconstruction relies on obtaining reliable correspondences. Hence
the presence of stable and representative features in the image is important, thus detecting,
extracting and matching the image features is a vital step. The quality of the feature detection
and matching directly affects the quality of reconstruction directly. The basic idea is to first
detect interest regions (keypoints) that are covariant to a class of transformations. Two types
of image features can be extracted form image content representation; namely global features
and local features. Global features (e.g., color and texture) aim to describe an image as a
whole and can be interpreted as a particular property of the image involving all pixels. While,
local features aim to detect keypoints or interest regions in an image and describe them.
In 3D reconstruction we use local keypoint features to obtain correspondences since they
provide a limited set of well localized and individually identifiable anchor points. Local
invariant features not only allow to find correspondences in spite of large changes in viewing
conditions, occlusions, and image clutter (wide-baseline matching), but also yield an interest-
ing description of the image content for image retrieval and object or scene recognition tasks
(both for specific objects as well as categories) [179]. Various local feature detectors have
been proposed in literature, such as Harris corner detector [68]. Depending on the datasets,
requirements and speed efficiency various feature detectors were proposed consecutively like
SIFT [105], SURF [18], MSER [109], KAZE [10] etc. for various applications.

Then, for each detected regions, an invariant feature vector representation (i.e., descriptor)
for image data around the detected keypoint is built. Feature descriptors extracted from
the image can be based on second-order statistics, parametric models, coefficients obtained
from an image transform, or even a combination of these measures. A large variety of
feature extraction methods have been proposed to compute reliable descriptors. Among
these descriptors, the scale invariant feature transform (SIFT) descriptor [105] utilizing local
extrema in a series of difference of Gaussian (DoG) functions for extracting robust features



30 Literature Survey and Background

and the speeded-up robust features (SURF) descriptor [18] partly inspired by the SIFT
descriptor for computing distinctive invariant local features quickly are the most popular and
widely used in several applications. These descriptors represent salient image regions by
using a set of hand-crafted filters and non-linear operations.

Once the descriptors are computed, they can be compared to find a relationship between
images for performing matching tasks. Generally, the performance of matching methods
depends on the underlying keypoint detectors and choice of associated image descriptors.
The datasets in our work are wide-baseline hence our focus is on wide-baseline matching.
Several techniques have been proposed in the literature [105] and are reviewed in detail in
Chapter 3.

2.2.3 Structure Computation

Once we have the correspondences the next step is to obtain the calibration of the scene.
The calibration is used to derive the sparse and dense structure of the scene and a review of
camera calibration and dense reconstruction is presented in this section.
Camera Calibration:
Camera calibration is a necessary step in 3D computer vision in order to extract metric
information from 2D images. It has been studied extensively in computer vision and pho-
togrammetry, and even recently new techniques have been proposed [202]. Primarily it
means, finding the quantities internal to the camera that affect the imaging process such as,
position of camera centre, focal length, different scaling factors for row pixels and column
pixels, skew factor and lens distortion. Good calibration is important to reconstruct a world
model with high accuracy and a benchmark is presented in [167].

Camera calibration is a well studied field and one crucial factor in the calibration is the
availability of different camera projection models [32]. Indeed, a camera is just a device
which projects a 3D scene to a 2D image plane and the choice of a proper mathematical
function to model such a transformation depends on the type of application. Camera models
can be broadly categorized as linear and non-linear. In the linear case, the simplest camera
model is the orthographic one, where the projection of a 3D point is independent of its
depth, i.e. perspectivity does not exist. Although its applicability is limited to scenes where
perspective effects are negligible, the existence of powerful and relatively simple factorization
algorithms such as the pioneering work of Tomasi and Kanade [173], makes it attractive.
Kanade’s work is based on the observation that when the feature tracks over a sequence are
listed in a matrix, the rank of that matrix is at most three assuming orthographic projection.
Consequently singular value decomposition factorization methods can be used to extract
structure parameters from that matrix. This method has been extended to more realistic
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linear camera models, for example para-perspective and perspective cameras [138]. However
initialization of the feature point depths is required as a preprocessing step in the latter work.

When the linear models are not adequate due to strong perspective distortion, perspective
camera models must be used. The pinhole model representing a perspective projection
without lens distortion is widely used. Typically initialization is performed using two or
three view geometric relationships, the fundamental matrix and tri-focal tensor respectively.
Typically for a multi-camera network the relationship is initially estimated between a pair of
cameras and new cameras are added sequentially to achieve full calibration. Such algorithms
are reported to be quite successful [19]. The underlying multi-view geometric concepts are
discussed in [43, 69].

Calibration is usually performed by: (1) estimating pairwise relations as outlined above
i.e. fundamental matrix/epipolar geometry and, (2) performing bundle adjustment across all
views to refine the cameras and estimate sparse 3D structure.

A practical technique which is proved to be effective is to compute the internal camera
parameters in a separate step before processing the target images. Such a preliminary
computation decreases the number of parameters to be estimated during the reconstruction
procedure and consequently results in a better conditioned problem. This can be accomplished
with a typical calibration scheme such as [201] or with the aforementioned uncalibrated
techniques. A-priori knowledge on the internal matrices significantly improves the system’s
performance in the case of scene degeneracies such as dominantly planar regions or when
the viewed object is relatively small compared to the image size. As a successful example,
a solution for the 5-point pose estimation problem was reported in [132] and a real-time
system exploiting it which could run for quite long sequences without drifting.

The calibration can be performed using reference objects or self-calibration techniques
which requires only image point correspondences. Camera parameters are estimated from
internet photo collection in [162]. Although no calibration objects are necessary, a larger
number of parameters need to be estimated. The accuracy of such methods is low compared
to other methods. Another work which targets review of camera calibration and dense
multi-view stereo of outdoor scene is [167]. Ground-truth is obtained from laser scans and
the tested aspects for 3D model building are pose estimation and multi view stereo with
known internal parameters, camera calibration and multi-view stereo with raw images. The
effect of any camera can be considered to be a projection of the 3-D real-world scene on to
an image plane [45]. Camera model hierarchy was studied by [12]. Details of the theory
on projective camera was investigated by [43]. Various camera models, their taxonomy and
properties are given in [69].
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For our internal datasets the intrinsic parameters are calibrated using a checker board.
Extrinsic parameters are estimated by wand-based calibration using bundle adjustment
between observed locations of colored markers [119]. For moving cameras, through-the-
lens calibration is employed to register the moving camera with the multiple static witness
cameras and estimate the extrinsic parameters [74].
Dense reconstruction:
The next step in the 3D reconstruction process is the structure recovery, given the feature
matches and calibration as the input to the system. The structure information is recovered
as the 3-D coordinates of the features obtained from the images. Geometrical constraints
can be established between the feature correspondences. Finally, 3-D coordinates of the
feature points can be recovered via triangulation. Although obtaining 3D points as output
maybe sufficient for some applications, such as robot navigation, it is desirable to generate
3D depths for each pixel in the input images for realistic 3D graphics rendering and the
review is presented in Section 2.1.2.

2.2.4 Temporal Coherence

A critical step for editing and reuse reconstructed 3D data from multi-camera capture is
the temporal alignment of captured mesh sequences to obtain a temporally coherent mesh
with surface correspondence over time. Such temporally coherent representation helps in
efficient representation, scene manipulation and analysis of motion while using a conventional
computer graphics pipeline.

Model-based approaches for 4D dynamic reconstruction inherently provide a 4D mesh
representation of the motion by utilizing a geometric template which is iteratively deformed
to match the captured silhouettes [53, 144]. However, the use of a geometric template limits
the range of surface deformation which can be represented. Model-free approaches [28, 73]
align a series of 3D mesh per frame with varying topology into a 4D model representation
which allows the representation of more general shape deformation. The model free temporal
alignment approaches can be classified in sequential and non-sequential. A sequential
approach by Cagniart et al. [28] divided the meshes into overlapping patches which are
tracked independently. The tracked patches are then mapped to a reference mesh to obtain
the temporal coherence. Sequential coherence refers to estimating frame-to-frame temporal
correspondences for each time frame. Another approach by Franco and Boyer [49] use
Expectation Maximization to jointly track and piece-wise rigidly segment a dynamic mesh
sequence reconstructed from a multi-view camera system. Both of these approaches assume
that the full geometry of object is available to obtain temporal coherence for the entire
sequence. However, sequential methods suffer from drift due to accumulation of errors
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and fail in case of large motion. Temporal coherence is introduced frame-to-frame which
leads to drift in the alignment due to accumulation of errors and rapid motion between
frames introduce large errors. The non-sequential methods overcome these limitations and
have been used to generate consistent geometric representation for model based multi-view
and RGBD data. Non-sequential non-rigid global alignment [27] using Prim’s minimum
spanning tree was introduced due to errors in sequential approach. Huang et al. [73]
produced non-sequential alignment over multiple sequences rather than a single sequence.
Their proposed alignment algorithm uses shape similarity (via shape histograms) to select
similar poses between sequences and Minimum Spanning Tree (MST) graph optimization to
minimize the total non-rigid deformation required to bring all frames into registration with
a common structure, thus reducing drift and increasing robustness against large non-rigid
motion. However, these approaches require water-tight meshes on the dynamic objects and in
real-world it is difficult to capture the full geometry of the dynamic objects and it is difficult
to apply these full geometry based techniques to complex datasets and partial surfaces.

Sequential methods were introduced to align geometries for partial surfaces. The concept
of optical flow was used to estimate scene flow between pixels of two 2D images to obtain
frame to frame alignment [113, 180]. A piecewise rigid scene flow approach is proposed
by Vogel et al. Other methods for 3D tracking jointly estimate the shape and motion of the
dynamic scenes directly in the 3D space [52]. Wei et al. [188] proposed a sequential approach
to align partial surfaces. A deep learning approach for finding dense correspondences between
3D partial geometries was introduced. A feature descriptor was trained on depth map pixels to
solve a body region classification problem. As discussed before these sequential approaches
suffer from errors due to drift. A non-sequential approach to align partial surfaces from Kinect
RGBD data was proposed in [108]. Feature tracks were obtained in 2D for the entire sequence
and non-rigid global alignment was performed to achieve temporal coherence. However,
there are no approaches in literature for non-sequential alignment of partial surfaces obtained
from multi-view RGB images.

2.3 Summary

This chapter reviewed existing multi-view static and dynamic scene reconstruction methods.
A review of approaches at each step of a typical 4D scene reconstruction pipeline from
wide-baseline multi-view video is presented. The review highlighted the following problems
in the literature of general dynamic scene reconstruction from multi-view videos:
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• Existing feature detection algorithms for wide-baseline multi-view reconstruction
produce non-uniform distribution of features with poor scene coverage in the sparse
scene reconstruction.

• The state-of-the-art multi-view scene reconstruction methods require strong assump-
tions of prior knowledge of the scene background, structure, segmentation or appear-
ance information to obtain the solution.

• Reconstruction is typically performed independently at each frame resulting in re-
construction of an incoherent mesh sequence without temporal correspondence or
consistent connectivity at successive frames.

• The methods used for temporal coherence across the entire sequence suffer from
various limitations: sequential coherence (frame-to-frame) which is prone to errors;
assume rigid objects with rigid motion in the scene; and some approaches only work
for RGBD scenes.

In this thesis we address these limitations with previous approaches by introducing a novel
approach to general 4D dynamic scene reconstruction from multi-view videos in the following
chapters.



Chapter 3

SFD: Segmentation based Features for
Wide-baseline Reconstruction

Feature detection and matching is the first step to obtain dynamic scene reconstruction. The
feature correspondences between pair of multi-view images are used to obtain the sparse
reconstruction of the scene. The quantity and quality of these feature matches determine
the quality of sparse 3D reconstruction of the scene. Hence the feature matches must be
distributed uniformly throughout the scene to get a reliable and complete representation of
the scene structure.

The correspondence obtained using existing feature detectors tend to be clustered on
a relatively few regions in the scene. These approaches result in a sparse non-uniform
distribution of scene features. Whilst this may be sufficient for camera estimation using
bundle adjustment the resulting feature set often results in poor scene coverage in the sparse
reconstruction. To handle this issue, we introduce a new feature detector for wide-baseline
scene reconstruction which gives uniform distribution of the sparse 3D points throughout
the scene and produces consistent feature detection with change in viewpoint (wide-baseline
views).

3.1 Introduction

Feature detection and matching plays a crucial role in multi-view stereo to obtain sparse
reconstruction of the scene. Finding reliable correspondences is a well-studied field in
computer vision and various feature detectors have been proposed in the literature. Existing
feature detection approaches work well for narrow-baseline multi-view data giving a reliable
sparse scene reconstruction, but the performance of these detectors is limited for wide-
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Fig. 3.1 SFD for wide-baseline matching and sparse reconstruction for Odzemok dataset.

baseline multi-view images. A common problem in wide-baseline sparse matching is the
sparse and non-uniform distribution of correspondences when using conventional detectors
such as SIFT, SURF, FAST, KAZE and MSER as seen in Section 3.5. Established feature
detectors such as Harris [68], SIFT [105], SURF [18], FAST [147] and MSER [109] often
yield sparse and non-uniformly distributed feature sets for wide-baseline matching.

Gradient based detectors (Harris, SIFT, SURF, STAR [8]) locate features at points of
high-image gradient in multiple directions and scales to identify salient features which are
suitable for affine-invariant matching across multiple scales resulting in non-uniform sparse
correspondences. Alternatively, Watershed segmentation based detectors (MSER) identify
salient regions which are stable across multiple scales which can be reliably matched across
wide-baseline views also resulting in relatively few feature matches.

In this chapter we propose a new segmentation based feature detector SFD which uses the
segmentation boundary (local maximal ridge lines of the image) rather than the segmentation
regions for wide-baseline scene reconstruction as shown in Figure 3.1. We use the segmen-
tation boundaries and SFD feature point detections are located at the intersection points of
three or more region boundaries. The intersection points represent local maxima of the image
function in multiple directions giving stable localization. Evaluation of SFD feature point
detections across wide-baseline views demonstrates that although the segmentation changes
with viewpoint the region intersection points are stable and accurately localized. SFD feature
points are also demonstrated to give improved scene coverage with computational cost similar
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Fig. 3.2 Comparison of feature matching and sparse reconstruction using SIFT and SFD for
Odzemok dataset.

Fig. 3.3 Comparison of sparse reconstruction using MSER, SIFT and SFD for Odzemok
dataset.
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to existing efficient wide-baseline feature detectors (SURF/FAST). Figure 3.2 presents an
example of comparison of wide-baseline correspondences and sparse 3D points for SFD and
SIFT. Figure 3.3 illustrates comparison of sparse reconstruction obtained using SFD, MSER
and SIFT. The sparse features based on SFD has better coverage compared to SIFT and
MSER. Few features are detected in the regions around the corners of the images for SIFT
and MSER, but these features are lost in matching and reconstruction stage as compared to
SFD that detects increased number of features around the corners of the image, retained in
the sparse reconstruction. Contributions in this chapter are:

• A novel segmentation based feature detector SFD for accurate wide-baseline match-
ing; which gives an increased number of good and repeatable features for different
viewpoints; accurate feature localization; and improved coverage for natural scenes.
The detected features are dynamically adaptable by a intuitive threshold.

• Feature detection can be applied to multiple segmentation techniques like Watershed,
Mean-shift, SLIC etc.

• A comprehensive performance evaluation for wide-baseline matching on benchmark
datasets against existing feature detectors (Harris, SIFT, SURF, FAST, MSER, ORB,
AKAZE) and descriptors(SIFT, BRIEF, ORB, SURF) showing improved performance
of the SFD detector in terms of both number of features and matching accuracy;

• Application to scene reconstruction demonstrates an order of magnitude increase in
the number of reconstructed points with improved scene coverage and reduced error
compared to previous detectors against ground-truth.

3.2 Related Work

Features are defined as interesting image points with the following characteristic properties
[179]:

• Repeatability: A feature should be invariant to noise and distortions.

• Distinctiveness: The feature detected should be unique in its neighbourhood.

• Quantity: The number of detected features should be sufficiently large, such that
a reasonable number of features are detected even on small objects. However, the
optimal number of features depends on the application. Ideally, the number of detected
features should be adaptable over a large range by a simple and intuitive threshold.
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• Accuracy: The detected features should be accurately localized.

• Efficiency: Preferably, the detection of features in a new image should allow for
time-critical applications.

Existing feature detection techniques are proposed to satisfy these constraints. Decades
of research has developed a lot of feature detection techniques and a review into interest-
point detection reveals three main approaches [121, 149]: image gradient analysis, intensity
templates, and contour analysis.

3.2.1 Image Gradient based Features

Early image gradient based approaches, such as Forstner corner detector [47], define an opti-
mal point based on the distances from the local gradient lines and Harris corner detector [68],
define an interest-point as the maximum of a function of the Hessian of the image. They used
the local autocorrelation function of a signal to measure the local changes of the signal with
patches shifted by a small amount in different directions. The Harris points are translation
and rotation invariant. Moreover, they are stable under varying lighting conditions.

A multi-scale invariant extension was achieved by successive application of Gaussian ker-
nels on scale-space representation of image and detecting interest-point as a local maximum
both spatially, and across the scale-space [117] to deal with significant affine transformations.
Mikolajcyzk and Schmid seek these maxima via the Laplacian-of-Gaussian (LoG) filter,
which is a combination of the Gaussian smoothing and the differentiation operation [116].
The idea is to select the characteristic scale of a local structure, for which a given function
attains an extremum over scales. The selected scale is characteristic in the quantitative
sense, since it measures the scale at which there is maximum similarity between the feature
detection operator and the local image structures. The size of the region is therefore selected
independently of the image resolution for each point.

SIFT implements difference-of-Gaussians [105] to improve on earlier approaches by
transforming an image into a large collection of local feature vectors which are invariant
to changes in scale, illumination and local affine distortions. Lowe exploited locations
that are maxima or minima of a Difference-of-Gaussian (DoG) function applied in scale
space to generate local feature vector that represent an image as a one parameter. The key
locations are computed by building an image pyramid with re-sampling between each level.
A combination of gradient space with local symmetry was used in [71].

Gradient based techniques offer accurate localization [5], and are robust to many image
transformations [117]. However, computation of the image gradients are sensitive to image
noise and are computationally expensive. SURF mitigates this via the use of integral images
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and 2D Haar wavelets [18]. Their approach is based on Hessian matrix (Fast Hessian) and
sums of 2D Haar wavelet response. They rely on the determinant of the Hessian for selecting
both location and scale. A box filter is used to approximate second order Gaussian derivative.

CenSurE achieves even faster operation by approximating the LoG operator with a bi-level
filter [8]. These approaches suffer from drawbacks since Gaussian blurring does not preserve
object boundaries and smooths to the same extent details and noise at all scales, spoiling
localization accuracy and distinctiveness. To overcome this problem KAZE features have
been presented that aim to detect and describe features in non-linear scale spaces [10]. The
scale-space representation is computed by non-linear diffusion filtering (instead of Gaussian
smoothing), yielding an improvement in the localization accuracy in [10](A-KAZE). This
makes blurring locally adaptive to the image data, blurring small details but preserving object
boundaries. This method increases repeatability and distinctiveness with respect to SIFT and
SURF because of the use of non-linear diffusion filtering. The main drawback of KAZE
is that it is computationally intense. However, A-KAZE claims superiority over all major
gradient based methods in terms of computational complexity, by using efficient diffusion
filtering [11].

3.2.2 Intensity based Features

Intensity template approaches seek patterns that are common manifestations of interest-
points [149]. SUSAN [161] design a non-linear cornerness function, which evaluates the
dissimilarity of a pixel to a disc surrounding it. FAST replaces the non-linear response
functions by a simple, but effective heuristic: it first computes the intensity differences
between the central pixel and a circle surrounding it, and then counts the contiguous pixels
with a difference above a threshold [147]. A rotation-invariant implementation is proposed
in [150], and a multi-scale extension, in [101]. An extension to a multi-scale detector by scale
selection with the Laplacian function was proposed in [100]. The Laplacian is estimated
using grey-level differences between pixels and location with largest estimate are retained.
This produces a large number of keypoint candidates which can be refined in the matching
process.

MSER or Maximally Stable Extremal Regions can be considered as a region detector
responding to areas conforming to a “basin” template [109]. The regions are connected
components of a thresholded image. The word “extremal” refers to the property that all pixels
inside the MSER have either higher (bright extremal regions) or lower (dark extremal regions)
intensity than all the pixels on its outer boundary. The “maximally stable” in MSER describes
the property optimized in the threshold selection process since every extremal region is a
connected component of a thresholded image. Intensity template methods are usually fast,
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compared to their gradient based counterparts [149]. However, with the exception of MSER,
they are not affine-invariant, which limits their ability to cope with viewpoint variations and
a recent comparative evaluation is presented in [5].

3.2.3 Contour based Features

Originally, contour based methods were popular in applications like line drawings, piecewise
constant regions, and cad–cam images rather than natural scenes and the focus was on
the accuracy of point localization. Contour intersections and junctions often result in bi-
directional signal changes. Therefore, a good strategy to detect features consists of extracting
points along the contour with high curvature. Curvature of an analog curve is defined as
the rate at which the unit tangent vector changes with respect to arc length. Contours are
often encoded in chains of points or represented in a parametric form using splines. Hence,
image contours give rise to two interest-point definitions: local maxima of the curvature
along a contour, and intersections. Mokhtarian and Suomla [120] implement the former by
building a scale-space representation of the contour map for the image, and detecting the
local maxima of the curvature. The robustness was improved by using gradient correlation
based detector [200]. Intersection of contour elements provides an alternative interest-point
definition. T-junctions constitute a straightforward example [120][21] which inspires the
proposed feature detector. Performance of curvature based techniques are dependent on
the quality of the extracted edges [13]. Although they are generally fast, the scale-space
approach introduces a compromise between robustness and accuracy. On the other hand,
contours, especially intersections are distinctive. Therefore, they are more robust to viewpoint
variation [13, 107].

3.2.4 Learning based features

Although work on feature detectors were mainly focused on handcrafted methods, learning
based methods have been proposed recently [70, 145, 182, 183]. A classifier was learned
to detect matchable keypoints for Structure-from-Motion (SFM) applications in [70]. They
collect matchable keypoints by observing which keypoints are retained throughout the SFM
pipeline and learn these keypoints. Although their method shows significant speed-up, they
remain limited by the quality of the initial keypoint detector. [145] learns convolutional filters
through random sampling and looking for the filter that gives the smallest pose estimation
error when applied to stereo visual odometry. Approaches based on machine learning were
proposed with FAST, [148] with aim of speeding up the detection process and improved
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Fig. 3.4 SFD feature detection and matching using watershed segmentation on Merton
dataset.

repeatability in FAST-ER [149]. But none of these features have been designed for the
purpose of wide-baseline stereo.

3.2.5 Summary and Motivation

To overcome the limitations of existing feature detectors in terms of scene coverage and
matching across wide-baseline views a segmentation based feature detector is introduced. It
is based on the property of intersections of contours which is robust to changes in viewpoint
as in [13, 107]. The number of features detected by curvature based techniques is quite
small [13] and none of them have been evaluated on wide-baseline image pairs. They are
based on only edge detection and vulnerable to the well-known difficulties in producing
stable, connected, one-pixel wide contours [67]. To avoid this an over-segmentation based
method for stable feature detection is proposed. The idea of using regions for salient feature
matching is well known and is exploited in [17, 83, 175] for applications other than wide-
baseline stereo. A survey on interest points based on Watershed, Mean-shift and Graph-cut
segmentation was presented by [88]. A method is proposed [88] that uses boundaries and
centres of gravity of the segments for extracting features. This demonstrates that Watershed
is superior to the alternatives in terms of repeatability and Mean-shift segmentation performs
best for natural scenes. Watershed detects the local maxima of the gradient magnitude
intensities as the region boundaries and proposed feature detection is based on the the
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Fig. 3.5 Illustration of SFD feature detection on the watershed segmentation for Odzemok
dataset.

detection of features as the intersection of local maxima, therefore Watershed is chosen as
base segmentation technique. An example of watershed segmentation followed by feature
detection and matching is shown on the Merton dataset in Figure 3.4. The detected features
and the correspondences are consistent across changes in viewpoint and are uniformly spread
across the scene.

3.3 SFD-Segmentation based Feature Detector

In this section new segmentation based feature detector is described. The main motivation for
this approach is to increase the quantity and distribution of distinct features detected through-
out the scene which are suitable for accurate wide-baseline matching and reconstruction, as
shown in Figure 3.1. The approach is based on over-segmentation of the image into regions
which ensures that detected features are distributed across the entire image as the region
boundaries are located along contours of local maxima in the image which are consistent with
respect to viewpoint change [88]. The use of local maximal contours overcomes the common
problem of setting arbitrary thresholds or scales for feature detection, which is common to
most existing feature detectors. SFD feature detection is based on the segmentation of the
image such that the features are detected at the boundaries of the segmented regions hence
the name ‘Segmentation based features’.
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Fig. 3.6 SFD feature detection on Odzemok dataset for 4 views illustrating the stability of
SFD with changes in viewpoint.

3.3.1 Feature Detection

Segmentation of an image results in a large number of small regions with uniform appearance.
The region boundaries represent ridge lines corresponding to local maxima of the image
function or maxima in gradient if the segmentation is performed on a gradient image. The
boundary intersection points where three or more region boundaries meet are local maxima in
the image function in multiple directions. Consequently these points are accurately localized,
distinctive and stable under changes in viewpoint giving good features for matching across
wide-baseline views. This observation forms the basis of our proposed region based feature
detector, resulting in an increased number of salient features which are suitable for matching
across wide-baseline views.

Over-segmentation is performed on the image using existing segmentation techniques
such that the regions in the image are separated by a 1 pixel wide boundary. The intersection
points of three or more region boundaries in the over-segmented image are detected as
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features and a unique intersection can only be obtained with regions of 1 pixel wide boundary.
The region intersection points are identified by traversing through the boundary points in the
image such that for each point on the contour 3× 3 pixel neighbourhood is tested for the
number of region labels. If three or more region labels are present the point is detected as
a feature as illustrated in Figure 3.5. These points are detected for the whole image on the
region boundary contours. Locating features where multiple region boundaries (3 or more)
intersect followed by sub-pixel refinement gives good localization, therefore SFD achieves
good localization which is consistent with-respect-to changes in viewpoint, as illustrated in
Figure 3.6 for Odzemok dataset. Segmentation is obtained for different viewpoints with a
baseline varying between 0 to 90 degrees followed by SFD feature detection. Feature points
consistent across views highlighted in the figure to show the stability of localization with
viewpoint for SFD feature detection.

3.3.2 Sub-pixel Refinement

Let us denote the set of features detected for an image as F= { f1, f2, ..., fNF}, where NF is the
total number of features. These features are integer values of the pixels where intersections of
regions are detected. We perform a local sub-pixel refinement to optimize the feature location
fi at a local gradient maxima using the Levenberg-Marquardt [102] method. This refinement
is based on the observation that every vector from the feature fi to a point p j located within
a neighbourhood N of fi = {x,y}T is orthogonal to the image gradient G j =

{
gx,gy

}T at
p j = {x+∆x,y+∆y}T , where ∆x,∆y is the shift at the point fi. In our case a window size of
W ×W is chosen for the neighbourhood N, such that W = min(W,H)

100 which is the optimum
window size for good localization of the features [55]. The cost function is defined as:

T ( fi) = ∑
jεN

t j( fi), where, t j( fi) = (GT
j ( fi − p j)(1− e−

∆x2
i +∆y2

i
2 ))2 (3.1)

Since the vectors G j and fi − p j are orthogonal, t j( fi) is 0 if fi is at a local maxima, thereby
making T ( fi) to be 0. The sub-pixel position of the feature point is the minima of T ( fi). The
process is repeated for the entire feature set F to obtain a new solution F∗ and the speed is
optimized by parallelization.

F∗ = argmin
fi

{T ( fi)} (3.2)

Feature descriptors are then applied to the local image regions of F∗ to perform matching. In
Section 3.5 various feature detectors with descriptors based on SIFT and BRIEF for matching
are evaluated.
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Fig. 3.7 Modified watershed algorithm used for SFD detection.

3.3.3 Segmentation

SFD can use different segmentation techniques, in this section we review possible segmenta-
tion methods. The performance of SFD for different segmentation methods is evaluated in
Section 3.5.

Segmentation of an image is defined as the process of partitioning an image into multiple
segments. Pixels in each region share similar properties and are distinct from the pixels in
adjacent regions. The boundary of the segments define contours of local maxima in the image.
Our focus is on finding fast, automatic and stable over-segmentation techniques suitable for
wide-baseline matching in general indoor or outdoor scenes. The SFD features defined in
Section 3.3.1 are evaluated on three different segmentation techniques:
Watershed (WA) [146]: The first segmentation technique is based on morphology. Readers
are referred to [115] for detailed information on morphological segmentation techniques;
the watershed transform [146] is used in this approach because of speed and efficiency. The
watershed transformation considers the gradient magnitude of an image as a topographic
surface. Pixels having the highest gradient magnitude correspond to watershed lines which
represent the region boundaries. Water placed on any pixel enclosed by a common watershed
line flows downhill to a common local intensity minimum. Pixels draining to a common
minimum form a basin, which represents a segment partitioning the image into two different
sets: the catchment basins and the watershed lines.

Implementing the transformation on the image gradient, the catchment basins correspond
to homogeneous grey level regions of this image. In practice, this transform produces an
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Fig. 3.8 Different segmentation algorithms for SFD feature detection.

over-segmentation due to scene structure, local appearance variation and image noise. We
use the modified version of the watershed algorithm defined in [137]. A single marker for
each region can be defined for watershed segmentation. These markers (or seeds) initiate the
flooding, indicating the sector that gives rise to the basins. The characteristics of the markers
determine the success of the watershed transform. For a repeatable over-segmentation the
gradient of the image is used to retrieve markers. A step-by-step algorithm is shown in Figure
3.7 and is described as follows:
Step 1: To remove the presence of high-frequency image noise the image is pre-processed
using a Bilateral filter [174]. The Bilateral filter is applied recursively with kernel length
increasing from 1 to 31. This has been found empirically to give a stable noise reduction
whilst preserving scene structure and edges. The same parameters are used for all the results
on indoor and outdoor scenes presented in this work.
Step 2: The next step is to identify gradients in the image, a Sobel filter [163] with a kernel
size of 3 is used to compute the horizontal and vertical image gradient components to obtain
the gradient magnitude.
Step 3: To obtain markers for Watershed segmentation the gradient magnitude image is
thresholded to obtain a binary image. The threshold is set as the lower quartile of the gradient
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magnitude for all image pixels. This is obtained by trial and error and it removes the weak
edges from the image which may introduce error in segmentation.
Step 4: The binary image is used to generate markers by detecting the hierarchical contours
on the image. The contours at the bottom of the hierarchy are chosen as markers for watershed
segmentation. These contours are innermost contours in the image and allows stability in
region growing process of watershed. If the contours at the top of hierarchy are chosen then
over-segmentation will not be obtained.
Step 5: These markers are used to perform watershed segmentation on the original image
to obtain a stable over-segmentation of the image with respect to scene structure and low-
frequency local appearance variation.
An example on Odzemok dataset is shown in Figure 3.8.

Mean-shift (MS) [34]: Mean-shift considers feature space as a empirical probability density
function. If the input is a set of points then Mean-shift considers them as sampled from
the underlying probability density function. If dense regions (or clusters) are present in the
feature space, then they correspond to the mode (or local maxima) of the probability density
function. For each data point, Mean-shift associates it with the nearby peak of the dataset’s
probability density function. For each data point, Mean-shift defines a window around it and
computes the mean of the data point. Then it shifts the center of the window to the mean
and repeats the algorithm till it converges. After each iteration, the window shifts to a more
denser region of the dataset. There are three main parameters considered in this segmentation:
Spatial resolution parameter(SRP) which affects the smoothing and connectivity of segments,
it is chosen depending on the size of the image, Range resolution parameter (RRP) which
affects the number of segments and the third parameter is Size of smallest segment (S3). The
parameters are initialized automatically and assignments to each of these parameters are
given below:

SRP =
W ×H

7.776×104 , RRP =
W ×H

7.776×104 , S3 = wmin ∗hmin (3.3)

,where W and H are the width and height of input image and wmin and hmin are the minimum
width and height of segmented regions which is set to approx 60×30 respectively.

The mean-shift segmentation method is based on connectedness criterion and is proved
to give stable and repeatable segments for natural scenes [88]. All pixels of an image are
considered as vectors in 5D consisting of spatial and color coordinates. Centroid based
mode detection is employed and coordinates are ascribed modes. Recursive fusion of basins
of attraction merges the modes located within a certain radius. This is an unsupervised
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segmentation technique and over-segmentation is performed on image pre-processed using
Bilateral filter to remove noise shown in Figure 3.8, followed by feature detection.

Simple Linear Iterative Clustering superpixels (SLIC) [6]: This segmentation technique
is based on Superpixel methods and it clusters pixels in the combined five-dimensional color
and image plane space to efficiently generate compact, nearly uniform superpixels with a
low computational overhead. This approach generates superpixels by clustering pixels based
on their color similarity and proximity in the image plane. SLIC is demonstrated to achieve
good quality segmentation at a lower computational cost over state-of-the-art superpixel
methods and to increase performance over pixel based methods.

The cluster centers are initialized by sampling pixels at regular grid steps. The cluster
centers are perturbed in a neighbourhood, to the lowest gradient position for each cluster
center. The best matching pixels are assigned from neighbourhood around the cluster center
according to a distance measure. The residual error is reduced iteratively and connectivity is
enforced. The segmentation requires the number of regions (S) as input and this is calculated
it using the following equation in this work:

S =
W ×H

wmin ×hmin
(3.4)

,where W and H are the width and height of input image and wmin and hmin are the minimum
width and height of segmented regions which is set to approx 60×30 respectively to avoid
very small segments as shown in Figure 3.8.

In this section SFD feature detection introduced for uniform scene coverage in the wide-
baseline scene reconstruction was described in detail. Various segmentation techniques
like Watershed, Mean-Shift and SLIC used for proposed feature detection were explained.
Feature detection is performed on pair of multi-view images which is followed by feature
matching and camera parameter estimation. The correspondences and camera parameters
are used for wide-baseline sparse scene reconstruction which is explained in the following
section.

3.4 Wide-baseline Scene Reconstruction

Wide-baseline correspondences are obtained for all pairs of images using SFD. These
correspondences are used to reconstruct a sparse 3D representation of the scene. Figure 3.1
presents an overview of the algorithm for sparse reconstruction.
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Fig. 3.9 Sparse scene reconstruction pipeline.

3.4.1 Sparse Scene Reconstruction

Sparse reconstruction is an important step for wide-baseline multi-view 3D reconstruction.
It includes estimation of the camera parameters for multi-view system and 3D points for
the structure using these parameters. The quality of sparse reconstruction is determined
by the number and location of 3D points [69]. Existing feature detection techniques give
few features leading to small number of correspondences and less 3D points. The proposed
detector solves issue of limited reconstructed points and non-uniformity. The algorithm is
shown in Figure 3.9. The data is captured and processed to obtain calibration and 3D structure
is retrieved using the algorithm described. Both the tasks are executed simultaneously to get
the final structure and parameters, but are depicted separately in the Figure 3.9 for more clear
understanding.

An exhaustive matching is performed between all pairs of the multi-view images using
the proposed SFD feature detector with a SIFT descriptor to get the correspondences using
the feature matching technique described above. The pairs are sorted according to the highest
number of matches and the first camera pair is selected from the list. Once correspondences
between the two images are retrieved, the position and orientation of camera is estimated.
This is described in the 3×4 Projection matrix P, which is combination of two elements:
P = [R|t], which are the Rotational element R and Translational element t. The P matrices
can be recovered in multiple ways [69]. In this work we estimate the Fundamental matrix.
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This 3×3 matrix encodes the epipolar constraint between the images: for each point x in
image 1 and corresponding point x′ in image 2 the following equation holds: x′Fx = 0.

It is proved in [69] that F can be used to infer the two projection P matrices given
sufficient point matches to estimate F . F has 9 entries (but only 8 degrees of freedom), so if
we have enough point pairs, we can solve for F in a least squares sense. The fundamental
matrix estimation procedure employs RANSAC and the normalized 8-point algorithm [69],
to find the epipolar geometry. However, [69] also point to a projective ambiguity problem
with using F. This means that the recovered camera matrices may not be the "real" ones,
but instead have gone through some 3D projective transformation. To cope with this, the
Essential Matrix can be used instead, which holds epipolar constraint over points but for
calibrated cameras. Using the Essential matrix removes the projective ambiguity and provides
a Metric (or Singular) Reconstruction, which means the 3D points are true up to scaling
alone, and not up to a projective transformation. The first camera is chosen as the world
reference frame to obtain the camera matrix for the second camera from the fundamental
matrix [69].

Once two camera matrices, P and P′ are obtained, the 3D structure of the scene can be
recovered. The ‘optimal’ triangulation method suggested by [69], optimizes the reconstruc-
tion solution based on the error from re-projection of the points back to the image plane,
which is adopted by the current system. The re-projection error over the calibration and the
structure parameters is minimized using bundle adjustment [162]. Bundle adjustment can be
defined as the problem of simultaneously refining the 3D coordinates describing the scene
geometry as well as the parameters of the relative motion and the optical characteristics of the
camera(s) employed to acquire the images, according to an optimality criterion involving the
corresponding image projections of all points. Bundle adjustment minimizes the re-projection
error between the image locations of observed and predicted image points, which is expressed
as the sum of squares of a large number of non-linear, real-valued functions. Thus, the mini-
mization is achieved using a non-linear least-squares algorithms. Levenberg–Marquardt has
proven to be one of the most successful due to its use of an effective damping strategy that
lends it the ability to converge quickly from a wide range of initial guesses. By iteratively
linearizing the function to be minimized in the neighbourhood of the current estimate, the
Levenberg–Marquardt algorithm involves the solution of linear systems known as the normal
equations.

Sparse pair-wise reconstruction results are shown for one camera pair for different
datasets. The results compare the pairwise reconstruction obtained from two different feature
detection approaches using SIFT and SFD.
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We assume that the camera intrinsics are known to obtain metric reconstruction of the
scene and camera extrinsics together with 3D point locations are estimated using the cor-
respondences. Initialization is performed using the fundamental matrix estimation which
employs RANSAC and the normalized 8-point algorithm [69], to find the epipolar geometry
using the intrinsics. The first camera is chosen as the world reference frame to obtain the
camera matrix for the second camera from the fundamental matrix. Then, for each image
correspondence, the triangulation algorithm [69] seeks the 3D point that minimizes the
re-projection error. After the initial pairwise sparse reconstruction is obtained for all camera
pairs, a new camera is registered to the structure by finding the 2D and 3D correspondences
between views and the 3D structure [69]. The view with highest correspondences is selected
and pose is estimated for the view from 3D-2D point correspondences using the RANSAC
algorithm. The estimated pose is used to augment the scene by triangulating the correspon-
dences. The process is repeated for all the views until the camera pairs are exhausted. The
algorithm employs global bundle adjustment [162] to minimize the re-projection error over
the calibration and the structure parameters to get the optimal sparse reconstruction.

Dataset Resolution Number of views Baseline Type
Odzemok 1920×1080 8(2 moving) 15 degrees Indoor, Dynamic
Dance1 1920×1080 7(1 moving) 15 degrees Indoor, Dynamic
Office 1920×1080 8(all static) 15 degrees Indoor, Dynamic
Magician 960×544 5(all moving) 40-55 degrees Indoor, Dynamic
Rossendale 1920×1080 8(all static) 25 degrees Outdoor, Dynamic
Cathedral 1920×1080 8(all static) 45 degrees Outdoor, Dynamic
Patio 1920×1080 12(all static) 15 degrees Outdoor, Dynamic
Juggler 960×544 6(all moving) 25-30 degrees Outdoor, Dynamic
Building 800×600 119(all static) 15-30 degrees Indoor, Static
Books 800×600 119(all static) 15-30 degrees Indoor, Static
Cloth 800×600 119(all static) 15-30 degrees Indoor, Static
Architecture 800×600 119(all static) 15-30 degrees Indoor, Static
Merton 1024×768 3(all static) 10-15 degrees Outdoor, Static
Valbonne 512×768 15(all static) 15-30 degrees Outdoor, Static
Castle 1024×768 19(all static) 10-15 degrees Outdoor, Static
Car 512×768 7(all static) 15-30 degrees Outdoor, Static

Table 3.1 The characteristic properties of datasets used for evaluation.
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Fig. 3.10 Results for all datasets: Top two rows: Pair of images from each dataset, Bottom 8
rows: Column 1st −3rd - Features detected on one image from each pair using MSER, SIFT
and A-KAZE respectively, Column 4th - Features detected by proposed SFD approach using
watershed segmentation and Column 5th - Features matched between pair of images using
SFD features.
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3.5 Results and Evaluation

This section presents evaluation of proposed SFD feature detector for different segmentation
techniques Watershed, Mean-shift and SLIC against existing feature detection techniques.
Extensive experimental results obtained on the standard evaluation set of [117] and on a
practical wide-baseline image matching application are presented in this section.

Evaluation is performed on variety of datasets: static and dynamic; indoor and outdoor
scenes. State-of-the-art feature detection techniques have used the static indoor and outdoor
datasets in their evaluation, hence these datasets are included in our evaluation for fair
comparison. Various benchmark dynamic datasets have been included to emphasize the im-
portance of SFD in wide-baseline dynamic scene reconstruction. Wide-baseline image/video
datasets (15-45 degree angle between adjacent cameras) of natural indoor and outdoor scenes
under variable lighting are:
Static indoor datasets [5]: Building, Books, Cloth, Architecture.Challenges: Variable light-
ing and viewpoints.

Static outdoor datasets: Merton CollegeI 1, Valbonne4, Castle4, Car4. Challenges: Repeti-
tive background, varying lighting condition.

Dynamic indoor datasets: Odzemok2 , Dance12, Office2, , Magician3. Challenges: Both
scattered and uniform background, stable lighting condition, single and multiple objects.
Magician is captured with only hand-held cameras.

Dynamic outdoor datasets: Rossendale2, Cathedral2, Patio2, Juggler3. Challenges: Both
scattered and uniform background, repetitive background, variation in illumination. Juggler
is captured with only hand-held cameras.

The characteristics of datasets are presented in Table 3.1. Feature detections using de-
fault parameters for MSER, SIFT and A-KAZE feature detectors are shown in Figure 3.10
against SFD based on Watershed segmentation.

1 http://www.robots.ox.ac.uk/ vgg/data/
2 http://cvssp.org/data/cvssp3d/
3 http://www.inf.ethz.ch/personal/lballan/datasets.html
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Fig. 3.11 Results for Dance1 dataset: Features detected on pair of images using SIFT,
A-KAZE and SFD approach using watershed segmentation.

3.5.1 Evaluation Criteria

The SFD feature detector is evaluated based on the properties of good features described
in [179]: quantity; efficiency; accuracy; repeatability; and coverage of the proposed SFD
against the state-of-the-art detectors (FAST, BRIEF, Harris, SIFT, GFTT, MSER, ORB,
STAR, SURF, KAZE, A-KAZE). The accuracy and repeatability is evaluated in Section
3.5.2 and quantity, coverage and efficiency is evaluated in Section 3.5.3. For SIFT, SURF,
STAR, ORB, FAST, MSER, Harris and GFTT we use the OpenCV based implementation.
For KAZE and A-KAZE the implementation available from the paper [10, 11] is used.
The feature detection thresholds of the different methods are set to proper values to detect
approximately the same number of features per image. Comparison of SFD features against
SIFT and A-KAZE feature detectors is shown in Figure 3.11. A region is highlighted in the
image where SFD gives uniform coverage of features as compared to existing state-of-the-art
methods.
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3.5.2 Feature Detection and Matching Accuracy Test

This section evaluates performance of different segmentation techniques for SFD. Adjacent
pairs of images are taken from each dataset and segmentation is performed using Watershed,
Mean-Shift and SLIC giving three variants SFD-WA, SFD-MS and SFD-SLIC respectively.
The proposed SFD detection is performed on each pair of images for each segmentation
method followed by feature matching using a SIFT descriptor. An exact nearest-neighbour
matching algorithm followed by a ratio test as explained in [105] is used to evaluate the
feature detector. All of the matches whose distance ratio is greater than 0.85 are rejected,
which eliminates 90% of false matches and 5% of the correct matches [105]. After obtaining
a set of refined matches, a left-right symmetry test is used to further remove inconsistent
matches due to repeated patterns. This is followed by RANSAC based refinement [143] of
matches without prior knowledge of camera parameters. The fundamental matrix is estimated
using RANSAC and the inliers are chosen as the set of matches.

Segmentation Watershed Mean-Shift SLIC
Dataset |F∗| TC RC |F∗| TC RC |F∗| TC RC
Odzemok 8169 6543 3717 7908 5913 3547 8093 7812 4921
Dance1 8242 6372 3394 7956 5652 3087 8305 7499 4459
Office 8074 6501 3508 7822 5908 3321 7998 7667 4768
Magician 7921 5057 2844 7878 4524 2698 7909 6629 3066
Rossendale 6576 4528 2332 6349 4075 2118 6542 4786 2972
Cathedral 7806 6324 3452 7747 6450 3601 7983 6161 3882
Patio 7207 5215 3270 7156 5309 3431 7176 5642 3986
Juggler 5231 4478 2342 5196 4563 2267 5435 4657 2878
Building 4981 3531 1983 4809 3467 2067 4943 3791 2240
Books 4877 3348 2019 4796 3259 1984 4814 3429 2319
Cloth 4532 3424 1732 4321 3349 1689 4559 3568 1981
Architecture 4790 3213 1654 4683 3563 1780 4897 3664 2091
Merton 9947 7644 4533 9817 6899 4485 10336 8899 5920
Valbonne 3251 2715 1135 2939 2217 1252 3065 2952 1981
Castle 5674 4043 2351 5547 4146 2474 5848 4420 2559
Car 7764 4915 3435 7939 5017 3552 8065 5152 3975

Table 3.2 Evaluation of feature detection and matching of SFD for three different segmen-
tation approaches (best highlighted in bold): F∗ shows the number of features detected,
Total count (TC) is the number of matches obtained with brute force matching using a SIFT
descriptor and RANSAC count (RC) is the number of correspondences that are consistent
with the RANSAC based refinement.
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Fig. 3.12 Re-projection error illustration

Experimental results for a pair of image for each dataset and all segmentation methods
(WA, MS and SLIC) are summarized in Table 3.2. The column headed ‘|F∗|’ shows the
number of features detected in one of the images. Total count (TC) is the number of matches
obtained with brute force matching using a SIFT descriptor and RANSAC count (RC) is the
number of correspondences that are consistent with the RANSAC based refinement performed
after the ratio and symmetry tests. The number of features detected by all segmentation
techniques are similar. The numbers of matches reduces by 30−40% after refinement using
the symmetry and RANSAC tests (RC).

Inlier ratio of the feature matches is defined as the ratio of the number of correct matches
(RC) total number of matches (TC). It is a measure of the reliability of a feature detector and
has been used in literature for evaluation extensively [117]. We calculate the inlier ratio from
table 3.2 for all the datasets. As noticed the inlier ratio is highest for SFD-SLIC segmentation
compared to MS and WA.

Matching accuracy evaluation: For further evaluation this section compares the feature
matching accuracy of SFD against MSER, SIFT and A-KAZE. We choose only these detec-
tors because they outperform the other feature detection methods for wide-baseline matching.
SFD-WA is chosen as our base segmentation technique because of its computational effi-
ciency. The aim is to evaluate the accuracy of each feature correspondence. The ground-truth
camera calibration and reconstruction obtained using this camera calibration is used for
evaluation of the accuracy of the feature matches for all datasets. Ground-truth camera
calibration with both intrinsic and extrinsic parameters is known for all the datasets. The
ground-truth reconstruction is available for static indoor datasets and for other datasets the
reconstruction is computed using existing reconstruction algorithms using the ground-truth
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MSER SIFT A-KAZE SFD-WA
Dataset RC MRE RC MRE RC MRE RC MRE
Odzemok 119 1.390 1269 1.175 1209 1.181 3717 1.351
Dance1 102 1.362 1109 1.231 1081 1.214 3394 1.251
Office 111 1.431 1203 1.403 1143 1.361 3508 1.354
Magician 72 1.255 786 1.104 764 1.045 2844 1.195
Rossen. 26 1.411 237 1.323 516 1.318 2332 1.315
Cathedral 24 1.386 969 1.152 1158 1.154 3452 1.179
Patio 24 1.396 832 1.223 1207 1.212 3270 1.256
Juggler 28 1.298 208 1.155 686 1.110 2342 1.237
Building 57 1.240 629 1.103 689 1.120 1983 1.221
Books 72 1.314 783 1.210 832 1.223 2019 1.207
Cloth 40 1.211 636 1.098 845 1.201 1732 1.159
Archi. 49 1.273 719 1.192 905 1.206 1654 1.211
Merton 81 1.255 1272 1.177 1509 1.196 4533 1.175
Valbonne 41 1.258 636 1.181 755 1.187 1135 1.159
Castle 67 1.318 695 1.171 835 1.152 2351 1.208
Car 65 1.330 1018 1.213 1207 1.200 3435 1.183

Table 3.3 Evaluation of matching accuracy of SFD against MSER, SIFT and A-KAZE using
the ground-truth reconstruction and camera calibration.

calibration information [62]. The accuracy is evaluated using the projection of a 3D point
which gives the ground-truth match for a point in pair of images. The error between the
ground-truth match and the match obtained using the different feature detection approaches
gives the measure of accuracy.

Ground-truth correspondences are obtained by back-projecting the 3D location of the
feature points detected in one image to the other image and evaluating the distance to the
estimated feature match. Mean re-projection error (MRE) given in Equation 3.5 is used for
accuracy evaluation of the estimated SFD feature matches again the ground-truth and the
re-projection error is illustrated in Figure 3.12.

MRE =
1

(K +1)

K

∑
0

√
(x− x′)2 +(y− y′)2 (3.5)

where (x,y) is the estimated SFD feature match, (x′,y′) is the re-projected point, and K is
the number of feature matches, here K = RC, where RC is the RANSAC count depicting the
final number of matches. Table 3.3 presents the results of the ground-truth correspondence
for the proposed SFD using Watershed segmentation with a SIFT descriptor for matching and
three other detector-descriptor combinations representing state-of-the-art detectors (MSER,
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SIFT and A-KAZE). RC shows the number of correspondences obtained with each approach
after symmetry and RANSAC consistency tests. The number of matches obtained with the
proposed SFD feature detector is greater by an order of magnitude than MSER, and by a
factor three greater than SIFT and A-KAZE. The MRE for SFD is lower compared to MSER
and comparable with SIFT and A-KAZE feature detectors within approx. ±0.2 pixels.

MRE gives an overall comparison of the accuracy of the feature matches, however the
distribution of the matches at different pixel errors is not clear. Although the MRE of SFD
is comparable with existing feature detectors, it is noted that SFD gives large number of
matches and it would be interesting to see the comparison of number of matches at each
pixel error against existing detectors. The more the number of matches at lower pixel error
the better the accuracy of the feature detector. Hence to evaluate this re-projection error
is calculated using the ground-truth reconstruction for each feature match. The errors are
ranked from low to high and a graph is plotted for the number of feature matches at each
pixel error.

The comparative evaluation of the re-projection errors for all the correspondences ob-
tained by SIFT, A-KAZE and SFD is plotted and results for 2 datasets from each category
are shown in Figure 3.13. Figure 3.13 shows that the number of wide-baseline matches for
a given maximum re-projection error are consistently greater for SFD detection than for
SIFT and A-KAZE. Approximately three times more points have less than 1 pixel error for
SFD compared to SIFT and A-KAZE depicting the relatively high accuracy of the proposed
method. This implies that taking the best N features from SFD will give higher accuracy
calibration/reconstruction than for SIFT feature detection. Therefore SFD gives more accu-
rate geometry estimation from wide-baseline views due to the improved accuracy of feature
localization demonstrating the suitability of SFD for sparse 3D scene reconstruction.

Repeatability: Repeatability of the features is an important property which indicates whether
or not the same feature will be detected in two or more different images of the same scene
and it is generally related to Invariance and Robustness. Existing methods model the
invariance mathematically and the detected features were designed to be unaffected by these
transformations. The feature detection methods are made less sensitive to small deformations
to increase the robustness. Typical variations that are tackled using robustness are image
noise, discretization effects, compression artefacts, blur, etc.

In the case of the proposed SFD detection repeatability is ensured by the initial segmenta-
tion. When images undergo transformations or deformations the segmentation approaches
are able to retrieve consistent edges in the images. The change is viewpoint or lighting causes
a slight variance in the strength of the edges but the points of intersection remain robust to
these deformations and transformations.
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Fig. 3.13 Accuracy results for dynamic datasets: Re-projection error cumulative distribution
of SIFT, A-KAZE and SFD-WA
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We measure the repeatability (R) of SFD, defined as R = Correct Matches
RC using the ground-

truth information for Odzemok dataset. We eliminate the matches from RC with MRE greater
that 2.5 pixels to obtain the ‘Correct Matches’, which is a standard setting to allow noise
variance [69]. The comparisons with FAST, MSER, ORB, SIFT and A-KAZE are shown
in Figure 3.14 for dynamic and in Figure 3.15 for static indoor and outdoor datasets. The
assignments in the figure are: A: FAST-BRIEF, B: Harris-SIFT, C: GFTT-SIFT, D: MSER-
SIFT, E: ORB-ORB, F: STAR-BRIEF, G: BRIEF-BRIEF, H: SIFT-SIFT, I: SURF-SURF,
J: KAZE, K: A-KAZE, L: SFD-WA-BRIEF, M: SFD-WA-SIFT, N: SFD-MS-BRIEF, O:
SFD-MS-SIFT, P: SFD-SLIC-BRIEF and Q: SFD-SLIC-SIFT. On left repeatability is shown
between testing images 1-2, 1-3, ..., 1-7 with baseline 15-120 degrees and on the right for
adjacent image pairs with baseline 15-30 degrees.

The repeatability of SIFT, A-KAZE and SFD detector is comparable and greater than
other detectors like FAST, ORB and MSER. Watershed segmentation performed consistently
better than other segmentation methods. As the baseline between the image pairs increases,
the overlap between the images reduce which results in decrease in the number of matches
(RC). It is noted that the repeatability for each feature detector reduces with the increase in
baseline which indicates a drop in the percentage of correct matches from the set of matches
(RC). The drop in the repeatability is similar for SFD, SIFT, A-KAZE and MSER. However,
the percentage of correct matches for SFD is slightly higher than existing approaches, as
seen from the Figure. The FAST and ORB detectors does not perform well for wide-baseline
images.
Evaluation of SFD vs. Harris/High Frequency/Uniform Sampling: The proposed SFD

feature detector results in an increased number of features against previous detectors designed
for wide-baseline matching applications. Alternative approaches to increase the number and
coverage of feature detections could be use of corner detectors such as Harris or uniform
grid sampling. Evaluation of the performance of SFD vs. Harris/High Frequency/Uniform
Sampling is presented in Table 3.4. For this comparison the threshold for the Harris detector,
threshold for high frequency detections and the resolution for uniform grid resolution are
set to give a similar number of features to SFD. Uniform grid sampling is performed by
locating features at points of maximum gradient magnitude with a 13×13 grid resolution.
The SIFT descriptor is used for all feature matching. Results presented in Table 3.4 show
that the proposed SFD approach significantly outperforms the Uniform and Harris feature
detectors after similarity and RANSAC tests are applied. This shows that the SFD approach
detects stable features across wide-baseline views.
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Fig. 3.14 Repeatability results for dynamic datasets: Left: Repeatability comparison for
matching of camera 1 to all other views (15-120 degree baseline); and Right: Repeatability
comparison for matching between adjacent views (15-30 degree baseline).
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Fig. 3.15 Repeatability results for static datasets: Left: Repeatability comparison for matching
of camera 1 to all other views (15-120 degree baseline); and Right: Repeatability comparison
for matching between adjacent views (15-30 degree baseline).
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Feature Detector Descriptor Features RC
Uniform Sampling SIFT 5508 78
High Frequency SIFT 5582 143
Harris SIFT 5542 155
SFD SIFT 5533 2342

Table 3.4 Evaluation of feature matching performance of SFD vs. high frequency and dense
feature sampling on Juggler dataset.

3.5.3 Benchmark Evaluation of Detector-Descriptor

To evaluate the performance of the proposed segmentation based feature detection approach
for wide-baseline matching we present a comprehensive comparison with existing state-
of-the-art feature detector and descriptor combinations. Comparison is performed with
binary (FAST [11], ORB [150]), BRIEF [29] and floating point (Harris [68], GFTT [157],
SIFT [105], SURF [18], STAR [8], MSER [109]), KAZE [10], A-KAZE [11] detectors.
These detectors are combined with feature descriptors (BRIEF [29], ORB [150], SIFT [105],
SURF [18]). Detectors and descriptors are used with default parameters. Figure 3.16 presents
the evaluation results for each detector-descriptor combination for wide-baseline matching
on all datasets. The left column presents the number of correct matches (RC) obtained after
similarity and RANSAC tests.

Performance of the proposed SFD detector combined with WA, MS and SLIC segmenta-
tion techniques with BRIEF and SIFT descriptors is shown in bars labelled L - Q, respectively
demonstrating that the approach consistently achieves a factor 3−10 increase in the number
of correct matches compared to previous detector-descriptor combinations. The right column
of Figure 3.17 presents the average computation time/frame showing that the computational
time is less than floating point detectors and similar to binary detectors. SFD-WA is the
fastest detector compared to MS and SLIC, but the number of correct matches are highest
for SLIC. MS gives lower number of correct matches compared to both WA and SLIC. The
evaluation shows a trade-off between the performance and the number of correct matches for
various segmentation techniques.
Scene Coverage: The distribution of the features across the scene is shown in Figure 3.10 for
different detectors: Proposed SFD with WA, SIFT, MSER. Both the quantity and distribution
of features for SFD give improved scene coverage for all the datasets.
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Fig. 3.16 Evaluation of number of correct matches on all datasets.
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Fig. 3.17 Evaluation of time for detecting features on a wide-baseline stereo pair for each
sequence in ms for all datasets.
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Fig. 3.18 Results of multi-view sparse reconstruction for all datasets for SIFT, A-KAZE and
SFD-WA .
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Dataset MSER SIFT A-KAZE SFD-WA SFD-MS SFD-SLIC
Odzemok 171 1884 4025 12385 9087 14515
Dance1 153 1652 3599 13603 8026 11302
Office 165 1792 3806 11681 8034 14109
Magician 128 1171 2544 9470 7014 9360
Rossen. 58 526 1145 2213 1017 3983
Cathedral 72 2153 2570 10840 9733 12895
Patio 61 1847 2679 8845 7261 7259
Juggler 67 461 1522 7211 6501 8102
Building 249 2788 2984 8606 6939 7660
Books 312 3398 3610 8762 7009 8610
Cloth 175 2760 3667 7516 5958 7634
Archi. 210 3107 3929 7725 6019 7178
Merton 316 2760 3274 9619 8118 10965
Valbonne 258 1380 1637 4084 3369 5121
Castle 261 1508 1811 5368 4333 4854
Car 252 2208 2619 7705 6755 7184

Table 3.5 Evaluation of the number of sparse 3D points from pair-wise reconstruction.

3.5.4 Application to Wide-baseline Reconstruction

Wide-baseline sparse scene reconstructions are presented for all the datasets in Figure 3.18.
Reconstructions obtained using the proposed SFD features are compared with those obtained
using the SIFT and A-KAZE detectors, in all cases the SIFT descriptor is used for matching.
As expected from the evaluation of wide-baseline matching presented above the number
of reconstructed points is much higher with the proposed approach as shown in Table 3.5
with WA, MS and SLIC. From Figure 3.18 it can be observed that sparse wide-baseline
reconstruction based on SFD gives a significantly more complete representation of the scene
(evaluation of the accuracy against ground-truth reconstruction for all datasets was presented
in Table 3.3). The feature detection thresholds of the different methods are set to detect
approximately the same number of features per image initially. However, the number of
feature matches and sparse 3D points is much lower for SIFT and A-KAZE compared to
SFD, showing the stability of SFD feature points. Hence, the SFD based dense reconstruction
gives more complete coverage of scene compared to other detectors.
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3.6 Limitations

Evaluation has been performed across a wide-variety of indoor and outdoor scenes to identify
the limitations of SFD feature detection in the context of wide-baseline matching. As
with other feature detection approaches the method is dependent on variation in surface
appearance and consequently will produce fewer and less reliable features in areas of uniform
appearance, or repetitive background texture like trees, sky etc. However, as demonstrated in
the evaluation SFD increases the number of features and scene coverage for wide-baseline
matching compared to previous feature detection approaches.

3.7 Conclusion

In this chapter we have proposed a novel feature detector for wide-baseline matching to
support 3D scene reconstruction. The approach is based on over-segmentation of the scene
and detecting features at intersections of three or more region boundaries. This approach is
demonstrated to give stable feature detection across wide-baseline views with an increased
number of features and more complete scene coverage than popular feature detectors used
in wide-baseline applications. SFD is shown to give consistent performance for different
segmentation approaches (Watershed, Mean-shift, SLIC), with SFD-SLIC giving a marginally
higher number of features. The speed of SFD feature detection is comparable to other methods
for wide-baseline matching.

A comprehensive performance evaluation against previous feature detectors (Harris, SIFT,
SURF, FAST, ORB, MSER) in combination with widely used feature descriptors (SIFT,
BRIEF, ORB, SURF) demonstrates that the proposed segmentation based feature detector
SFD achieves a factor 3− 10 times more wide-baseline feature matches for a variety of
indoor and outdoor scenes. Quantitative evaluation of SFD vs. SIFT feature detection shows
that for a given error level SFD gives a significantly larger number of features. Improved
accuracy in feature localization with SFD results in more accurate camera calibration and
reconstruction of sparse scene geometry.

Application to stereo reconstruction from wide-baseline camera views demonstrates that
the SFD feature detector combined with a SIFT descriptor achieves a significant increase
in the number or reconstructed points and more complete scene coverage than existing
detectors. The sparse scene reconstruction obtained from SFD keypoints is used to initialize
our framework for general dynamic scene reconstruction. Large number of reliable sparse
features in the scene gives us information about various objects in the scene, also large
number of points provide detailed information on each object in the scene including dynamic
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objects at each time instant. The increase in the scene coverage and the number of features in
the wide-baseline sparse reconstruction using SFD compared to existing feature detectors
provides for a better initialization for dense dynamic scene reconstruction presented in
Chapter 4.



Chapter 4

Dense Reconstruction of Real-world
Dynamic Scenes

4.1 Introduction

In this chapter we address the problem of dense surface reconstruction for real-world dynamic
scenes without prior knowledge or assumptions on scene structure or background. The
segmentation based feature detector SFD provides an initial sparse scene reconstruction
with good feature coverage for both static and dynamic elements in the scene. This avoids
the requirement for prior knowledge of the background and static backgrounds commonly
assumed in previous work. The problem is then to obtain a dense surface reconstruction with
accurate object segmentation given the sparse initialization. A large number of uniformly
distributed sparse features in the 3D reconstructions leads to better initialization for dense
reconstruction. Uniformly distributed large number of points are required on the moving
objects in the scene to obtain initial coarse reconstruction from the correspondences of
detected points. Salient object identification is performed by clustering the sparse features
in the 3D space to obtain the initial coarse reconstruction. This is then refined for each
object through joint optimization of shape and segmentation using a robust cost function for
multi-view dynamic dense scene reconstruction explained in this chapter.

Recent research in multi-view dynamic scene reconstruction techniques has been applied
to less controlled outdoor scenes. Initial research focused on reconstruction in sports [62]
exploiting known background images or the pitch color to obtain an initial segmentation.
Visual-hull based reconstruction was performed with known prior foreground/background,
which is achieved using a uniform chroma-key color background or background image plate.
Alternatively, multi-view stereo techniques have been developed which require a relatively
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Fig. 4.1 Dense reconstruction results for Odzemok and Juggler datasets using SIFT and SFD
feature detectors.

dense camera network resulting in large numbers of cameras. Extension to more general
outdoor scenes [15, 82, 170] uses prior reconstruction of the static geometry from images of
the empty environment. Research has also exploited strong prior models of dynamic scene
structure such as people or used active depth sensors to reconstruct dynamic scenes. These
approaches to general dynamic scene reconstruction fail in case of complex (cluttered) scenes
captured with moving cameras in absence of any priors.

This chapter presents an approach for unsupervised dynamic scene reconstruction from
multiple wide-baseline static or moving camera views without prior knowledge of the scene
structure or background appearance. Existing techniques for dynamic scene reconstruction
from multiple wide-baseline camera views primarily focus on accurate reconstruction in
controlled environments, where the cameras are fixed, calibrated and the background is
known. These approaches are not robust for general dynamic scenes captured with sparse
moving cameras. Previous approaches for outdoor dynamic scene reconstruction assume
prior knowledge of the static background appearance and structure.

The input is a sparse set of synchronized multi-view videos without any foreground
segmentation. SFD features presented in Chapter 3 for wide-baseline matching are detected
between pairs of views at each frame across the sequence for more complete coverage of
the scene as compared to SIFT as shown in Figure 4.1 for Juggler and Odzemok dataset.
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Fig. 4.2 General dynamic scene reconstruction (a) Multi-view frames for Juggler dataset, (b)
Segmentation of dynamic objects and (c) Reconstructed mesh

The number of objects obtained from the sparse features in the final mesh reconstruction of
SFD is higher than SIFT. Hence, the SFD based dense reconstruction gives more complete
coverage of scene compared to SIFT. The scene structure is estimated automatically using the
SFD correspondences. An initial coarse reconstruction and segmentation of dynamic scene
objects is obtained from sparse features matched across multiple views. This eliminates the
requirement for prior knowledge of the background scene appearance or structure. Joint
segmentation and dense reconstruction refinement is then performed to estimate the non-rigid
shape of dynamic objects at each frame. View-dependent optimization of depth is performed
with respect to each camera which is robust to errors in camera calibration and initialization
to obtain dense reconstruction. Robust methods are introduced to handle complex dynamic
scene geometry in cluttered scenes from independently moving wide-baseline cameras
views. The proposed approach overcomes constraints of existing approaches allowing the
reconstruction of more general dynamic scenes. Results for a popular dataset, Juggler
[15] captured with a network of moving hand-held cameras are shown in Figure 4.2. The
contributions are as follows:

• Unsupervised dense reconstruction and segmentation of general dynamic scenes from
multiple wide-baseline views.

• Automatic initialization of dynamic object segmentation and reconstruction from
sparse features.

• Robust refinement of dense reconstruction and segmentation integrating error tolerant
photo-consistency and edge information.
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4.2 Related Work

Dense dynamic scene reconstruction is a challenging task as there are number of factors
which need to be handled like errors in calibration, motion blur, cluttered background,
articulated and non-rigid motion of multiple people, resolution differences between camera
views, wide-baselines and non-uniform dynamic backgrounds. Segmentation of dynamic
objects from such scenes is difficult because of background complexity and the likelihood
of overlapping background and foreground appearance distributions. Reconstruction is also
challenging due to limited visual cues and relatively large errors affecting both calibration
and extraction of a globally consistent surface reconstruction.

Initial research focused on narrow-baseline stereo [96, 99] requiring a large number
of closely spaced cameras for complete reconstruction of dynamic shape. Practical recon-
struction requires relatively sparse moving cameras to acquire coverage over large outdoor
areas. A number of approaches for reconstruction of outdoor scenes require initial silhouette
segmentation [61, 62, 82, 190] to allow visual hull reconstruction. The unavailability of
the visual hull discards many of the top-performing multi-view stereo algorithms. Other
techniques employ optical flow based techniques which compute the displacement of each
pixel between two images however such techniques usually make no assumptions on the
existence of global geometric constraints, such as the epipolar geometry, and consequently
the search region becomes 2D not 1D which makes the problem more ill-conditioned. There
are also relatively new methods to come up with dense reconstructions, such as [43] describe
a variational method where a surface is evolved with level set based PDE’s to come up with
the best 3D representation. Another type of method which also discretized the 3D space is
called space or voxel carving, which typically assumes a hypothetical 3D grid in the bounding
box of the viewed object and conducts a 3D search for the best possible surface representation.
A survey of such volumetric methods has been made by [160]. Another interesting thread of
research is from [167] where probabilistic methods are deployed to generate 3D depth from
multiple wide-baseline views. Imaging, occlusions, and outliers are modeled with generative
models and the most likely model is inferred in an Expectation-Maximization framework.
But these approaches do not work for cluttered challenging outdoor scenes. Variational
methods get stuck into local minima, unless they provide a way of estimating a close and
reliable initial guess that takes visibility into account. In contrast to these methods, Furukawa
et al [51] proposed a very accurate dense reconstruction of cluttered challenging scenes by
using the 3D points as the initialization which is obtained using SIFT features for static
scene.

Recent research has proposed reconstruction from a single hand-held moving camera
given a strong prior for bilayer segmentation [199]. Bi-layer segmentation is used for depth-
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Fig. 4.3 Initialization of existing method with segmentation to obtain depth map [62].

map reconstruction with the DAISY descriptor for matching [77], results are presented for
hand-held cameras with a relatively narrow-baseline. Pioneering research in general dynamic
scene reconstruction from multiple hand-held wide-baseline cameras [15, 170] exploited
prior reconstruction of the background scene to allow dynamic foreground segmentation and
reconstruction. This requires images of the environment captured in the absence of dynamic
elements to recover the background geometry and appearance. These approaches either
work for static/indoor scenes or exploit strong prior assumptions like silhouette information,
known background or scene structure. Our aim is to perform dense reconstruction of dynamic
scene automatically without any prior knowledge of background or segmentation of dynamic
object.

4.2.1 Joint Segmentation and Reconstruction

Many of the existing multi-view reconstruction approaches rely on a two-stage sequential
pipeline where foreground/background segmentation is initially performed independently
with respect to each camera, and then used as input to obtain visual hull for multi-view
reconstruction. The problem with this approach is that the errors introduced at segmentation
stage cannot be recovered and are propagated to the reconstruction stage reducing the
final reconstruction quality. Segmentation from multiple wide-baseline views has been
proposed by exploiting appearance similarity [39, 98, 196]. These approaches assume static
backgrounds and different color distributions for the foreground and background [39, 153]
which limits applicability for general scenes.
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Joint segmentation and reconstruction methods incorporate estimation of segmentation
or matting with reconstruction to provide a combined solution and have been shown to
given improved performance for complex scenes. Joint refinement avoids the propagation
of errors between the two stages thereby making the solution more robust. Also, cues from
segmentation and reconstruction can be combined efficiently to achieve more accurate results.
The first multi-view joint estimation system was proposed by Szeliski et al.[169] which used
iterative gradient descent to perform an energy minimization. A number of approaches were
introduced for joint formulation in static scenes and one recent work used training data to
classify the segments [193]. The focus shifted to joint segmentation and reconstruction for
rigid objects in indoor and outdoor environment. Approaches used a variety of techniques
like patch based refinement [135, 158] and fixation of cameras on the object of interest [30].

Practical application of joint estimation requires these approaches to work on non-rigid
objects like humans with clothing. Recent work proposed joint reconstruction and segmenta-
tion on monocular video achieving semantic scene segmentation but these approaches do not
work with dynamic objects [92]. A multi-layer segmentation and reconstruction approach
was proposed for sports data and indoor sequences [62] for multi-view videos.This work
on indoor and outdoor dynamic scene reconstruction has shown that joint segmentation and
reconstruction across multiple views gives improved reconstruction [62]. The algorithm used
visual hull as a prior shape estimate obtained from segmentation of the dynamic objects as
shown in Figure 4.3. The visual hull was optimized by combination of photo-consistency,
silhouette, color and sparse feature information in an energy minimization framework to
improve the segmentation and reconstruction quality. Although structurally similar to our
approach it requires a background plate (assumed unknown in our case) as a prior to esti-
mate the initial visual hull by background subtraction. The probabilistic color models of
foreground and background are also used for optimization. A quantitative evaluation of
state-of-the-art techniques for reconstruction from multiple views was presented by [156].
These methods are able to produce high quality results, but rely on good initializations and
strong prior assumptions. To overcome these limitations, the proposed approaches initialized
the foreground object segmentation automatically from wide-baseline feature correspondence
followed by joint segmentation and reconstruction.

4.2.2 Graph-cuts in Computer Vision

Graph-cuts have been used extensively in CV applications like segmentation [25], stereo [24]
and 3D reconstruction [62]. The problem of segmentation using graph-cuts can be defined
as a partitioning of a graph structure in two disjoint sets. A graph consists of vertices and
edges connecting those vertices with a non-negative edge weight. A graph structure is built
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Fig. 4.4 Min-cut max-flow graph-cut example for segmentation

G = {V ,E } where V is the set of the vertices and E is the set of edges with weights wi

assigned to each edge. Vertices are used to represent any entity in the problem domain and
edges represent the dependencies between them. Additional nodes or vertices called as Source
and Sink are introduced in the graph. A min-cut/max-flow algorithm is used to separate the
graph in two sets, each starting from the Source and Sink nodes respectively; such that the
cut represents minimum capacity (sum of edge weight) thereby ensuring maximum flow
through the graph. An example is shown in Figure 4.4 depicting min-cut for segmentation.
The min-cut/max-flow algorithm forms the basis of many other graph based algorithms.
Graph-cut is a method of solving problems formulated as an Markov Random Field.

This two-way division of the graph is useful in cases when a binary decision needs
to be made. For more common applications graph-cut is extended to multiple discrete
labels by employing Markov Random Fields. A labelling algorithm is applied so as to
minimize an energy function which consists of cost of assigning label to each vertex along
with pairwise potentials in the graph as in [25]. Problems of this form are known to be
NP-hard and therefore, a globally optimal solution cannot be obtained. However, a strong
local minima can be obtained through graph-cut based optimization algorithms such as
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Fig. 4.5 Overview of dense dynamic scene reconstruction framework

α-expansion. In computer vision applications the main idea of the alpha-expansion algorithm
is to successively segment all α and non-α pixels with graph-cuts and the algorithm will
change the value of α at each iteration if it lowers the total energy. The algorithm will iterate
through each possible label for α until it converges.

4.3 Overview

Image based 3D dynamic scene reconstruction without a prior model is a key problem in
computer vision. This research aims to overcome the limitations of the previous approaches
enabling robust wide-baseline multi-view reconstruction of general dynamic scenes without
prior assumptions on scene appearance, structure or segmentation of the moving objects
(Figure 4.5). The approach identifies and obtains an initial coarse reconstruction of dynamic
objects automatically which is then refined using geometry and appearance cues in an
optimization framework. The approach is a significant development over existing approaches
as it works for scenes captured only with moving cameras with unknown background and
structure. Existing state-of-the-art techniques have not addressed this problem until now.

The motivation of our work is to obtain automatic dense reconstruction and segmentation
of complex dynamic scenes from multiple wide-baseline camera views without restrictive
assumptions on scene structure or camera motion. The proposed approach estimates per-pixel
dense depth with respect to each camera view of the observed moving non-rigid objects in
the scene. View-dependent depth maps are then fused to obtain a reconstruction for each
dynamic object. An overview of the approach is presented in Figure 4.5 and consists of the
following stages:
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Data Capture: The scene is captured using multiple synchronized video cameras (static or
moving) separated by a wide-baseline. The cameras are synchronized during the capture
using genlock and time-code generator or later using the audio information.
Calibration and sparse reconstruction: The procedure explained in Chapter 3 is followed
for extrinsic calibration. Moving cameras are calibrated automatically on-the-fly using
through-the-lens multi-camera calibration techniques [74]. A sparse 3D point-cloud is re-
constructed from wide-baseline SFD feature matches for each time instant for the entire
sequence.
Initial dynamic object segmentation and reconstruction: Automatic initialization is per-
formed without prior knowledge of the scene structure or appearance to obtain an initial
approximation for each dynamic object. Dynamic objects are segmented from the sparse
3D point-cloud by combining optical flow with 3D clustering (section 4.4). The initial
coarse reconstruction for the observed moving objects in the scene is used to define the depth
hypotheses at each pixel for the optimization.
Joint segmentation and reconstruction for each dynamic object: The initial coarse re-
construction is refined for each dynamic object through joint optimization of shape and
segmentation using a robust cost function combining matching and smoothness information
for wide-baseline matching. View-dependent optimization of depth is performed with respect
to each camera which is robust to errors in camera calibration and initialization. This gives a
set of dense depth maps for each dynamic object.
3D model generation and texture mapping: A single 3D model for each dynamic object
is obtained by fusion of the view-dependent depth maps using Poisson surface reconstruction
[81]. Surface orientation is estimated based on neighbouring pixels. Projective texture
mapping is then performed for free-viewpoint video rendering.
Dense reconstruction of sequence: The process above is repeated for the entire sequence
for all dynamic objects per frame (each time-instant).

We assume multiple foreground objects corresponding to people/objects located at differ-
ent depths and a single background layer. Depth is estimated only for foreground objects
(background is assigned an unknown depth label). There are several motivations for not
explicitly reconstructing the background. Firstly, this cannot be done reliably from the small
number of cameras considered here (due to severe occlusions and framing limitations which
prevent large portions of the background from being visible in more than a single view).
Secondly, background reconstruction is often not required, as the post-production pipelines
often only require foreground objects for composition with a virtual background set or a
separately captured photo-realistic model.
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The proposed approach enables automatic reconstruction of all dynamic objects in the
scene as a 3D mesh sequence. The joint segmentation and reconstruction in a view-dependent
manner helps in handling calibration errors unlike global approaches which require accurate
calibration of the scene. Calibration inaccuracies produce inconsistencies limiting the
applicability of global reconstruction techniques which simultaneously consider all views;
view-dependent techniques are more tolerant to such inaccuracies because they only use a
subset of the views for reconstruction of depth from each camera view.

Subsequent sections present the novel contributions of this work in initialization and
refinement to obtain a dense reconstruction. The approach is demonstrated to outperform
previous approaches to dynamic scene reconstruction and does not require prior knowledge
of the scene structure.

4.4 Initial Dynamic Object Reconstruction

For general dynamic scene reconstruction, there is a need to reconstruct and segment the
dynamic objects in the scene at each frame instead of whole scene reconstruction for compu-
tational efficiency and to avoid redundancy. This requires an initial coarse approximation for
initialization of a subsequent refinement step to optimize the segmentation and reconstruction
with respect to each camera view. We introduce an approach based on sparse point-cloud
clustering and optical flow labelling. This approach is robust to scene clutter in the 3D point-
cloud segmentation and partial segmentation of the dynamic object using optical flow due to
partial motion or correspondence failure. Initialization gives a complete coarse segmentation
and reconstruction of each dynamic object for subsequent refinement. The optical flow and
cluster information for each dynamic object helps us to retain consistent labels for the entire
sequence. The process is as follows:

• Sparse SFD features are matched in time for consecutive time instants for each dynamic
object.

• Dense optical flow is performed on the initial coarse segmentation of each dynamic
object using the sparse dynamic features as initialization to remove or reduce the errors
in sparse correspondence.

• The dense flow is sampled at the sparse feature matches which were used for initializa-
tion previously. This is used to identify the dynamic points in the scene.
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Fig. 4.6 Clustering of sparse point-cloud for Odzemok dataset

4.4.1 Sparse Point-cloud Clustering

Sparse reconstruction based on wide-baseline SFD feature matching, Chapter 3, of the
scene consists of outliers due to the calibration errors and false feature matches. This
complicates the estimation of local point-cloud characteristics for further processing, leading
to erroneous values. These irregularities can be handled by using a sparse outlier removal
[152]. The method is based on the computation of the distribution of point to neighbours
distances in the input dataset. The method performs a statistical analysis on each point’s
neighbourhood assuming a Gaussian distribution, and points not satisfying the criteria are
trimmed. To retrieve the sparse features corresponding to the dynamic objects from the
sparse reconstruction of the scene, this representation is segmented into clusters followed by
optical flow labelling.
Clustering: A data clustering approach is applied to identify the dynamic objects in the scene,
an example is shown in Figure 4.6. Most clustering methods rely on spatial decomposition
techniques that find subdivisions and boundaries to allow the data to be grouped together
based on a given measure of “proximity”. This measure is usually represented with the
Manhattan (L1) and Euclidean (L2) distance metrics. For example a data clustering approach
based on Euclidean distance uses 3D grid subdivision of the space with fixed width boxes.
This particular representation is very fast to build and is useful for situations where either a
volumetric representation of the occupied space is needed, or the data in each resultant 3D
box (or octree leaf) can be approximated with a different structure. However this method
can only be used for applications requiring equal spatial subdivisions. For situations where
clusters can have different sizes a more complex algorithm is needed.

Hence for our framework an approach proposed by [152] is used. A cluster is defined
such that every point in a cluster is at a threshold distance from points in different clusters.
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The minimal distance between any two clusters is estimated by making use of approximate
nearest neighbours queries via a kd-tree representation of sparse points. In a more general
sense, nearest neighbours information is used to obtain the cluster, that is essentially similar
to a flood fill algorithm. The algorithm is described in Algorithm 4.1. We choose this
because of its computational efficiency and robustness. The approach allows unsupervised
segmentation of dynamic objects and is shown to work well for cluttered and general outdoor
scenes in Section 4.6.

Create a kd-tree representation for the input point-cloud;
Set up an empty list of clusters, and a queue that needs to be checked;
for every point in point-cloud do

Add point to current queue;
for every point in the current queue do

Search for the set of point neighbours of the point in a sphere with radius less
than the minimal distance;

For every neighbour of the point above, check if the point has already been
processed, and if not add it to the current queue;

end
When the list of all points in queue has been processed, add this set to the list of

clusters, and reset queue to an empty list;
end
The algorithm terminates when all points in the point-cloud have been processed and

are now part of the list of point clusters.
Algorithm 4.1: Sparse point-cloud clustering(object identification) algorithm[152]

4.4.2 Coarse Scene Reconstruction

Clustering helps in identification of various objects in the scene. For dynamic scene re-
construction, moving objects of the scene are identified by performing optical flow on
consecutive frames for a single view of each cluster. For each cluster the optimal camera
view is dynamically selected to maximize visibility based on the sparse dynamic feature
points at each frame. This allows efficient selection of the best view for optical flow. The
objects in close proximity and with similar motion may be clustered together but will be
separated once these constraints are changed. Optical flow is used to assign a unique label
for each dynamic cluster throughout the sequence. If an object does not move between two
consecutive time instants the reconstruction from the previous frame is retained. This limits
the dynamic scene reconstruction to objects which have moved between frames reducing
computational cost.
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Fig. 4.7 Initial coarse reconstruction algorithm using SFD features

Fig. 4.8 Example of initial coarse reconstruction of the dynamic object in the Odzemok
dataset
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The process to obtain the coarse reconstruction is shown in Figure 4.7 and an example is
shown in Figure 4.8. The sparse representation of dynamic object is back-projected on the
rectified image pair for each view. Delaunay triangulation [46] is performed on the set of
back projected points for each cluster on one image and is propagated to the other multi-view
images at the same time instant using the sparse matched features. For each corresponding
triangle pair direct linear transform is used to estimate the affine homography. Displacement
at each pixel within the triangle is estimated by interpolation to get the initial dense disparity
map for the image pair. Triangles with edge length greater than the median length of edges
of all triangles are removed to avoid triangulation across step discontinuities. For each
remaining triangle pair direct linear transform is used to estimate the affine homography
[125]. Displacement at each pixel within the triangle pair is estimated by interpolation to get
an initial dense disparity map for each cluster in the 2D image pair labelled as RI depicted in
red in Figure 4.8.

The region RI does not ensure complete coverage of the object, so this region is ex-
trapolated to obtain a region RO (shown in yellow) in 2D by 5% of the average distance
between the boundary points(RI) and the centroid of the object. We assume that the object
boundaries lie within the initial coarse estimate and depth at each pixel for the combined
regions may not be accurate. Hence, to handle these errors in depth a volume is added in
front and behind of the projected surface by an error tolerance (calculated experimentally),
along the optical ray of the camera. This tolerance may vary if a pixel belongs to RI or RO

as the propagated pixels of the extrapolated regions (RO) may have a high level of errors
compared to error at the points from sparse representation (RI) requiring a comparatively
higher tolerance. The calculation of the threshold depends on the capture volume of the
datasets and is set to 1% of the capture volume for RO and half the value for RI . This
volume in 3D corresponds to our initial coarse reconstruction of the dynamic object and
enables us to remove the dependency of the existing approaches on background plate and
visual hull estimates. This process of cluster identification and coarse reconstruction can be
performed for multiple dynamic objects in a complex general environments. Initial dynamic
object segmentation using point-cloud clustering and coarse segmentation is insensitive to
parameters. Throughout this work the same parameters are used for all datasets.
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Fig. 4.9 Initial coarse reconstruction: White line represents the actual surface, Depth labels
are represented as circles; blue circles depict depth labels in DO, green circles depict depth
labels in DI and black circles depict the initial surface estimate.

4.5 Joint Segmentation and Reconstruction

4.5.1 Problem Statement

In this section our aim is to refine the depth of the initial coarse reconstruction estimate of
each dynamic object. The problem is to estimate the depth of all moving objects incorporating
the initial segmentation and shape information at each time instance for all the views. We
do not require a narrow-baseline set-up as is often the case in stereo reconstruction; in
fact only a small number of synchronized cameras is assumed, these can be separated by a
relatively large baseline. For simplicity, let us consider a single input camera, referred to
thereafter as the reference camera, and its NC neighbouring cameras indexed from 1 to NC and
referred to thereafter as auxiliary cameras; depth reconstruction for all cameras is obtained
by considering each input camera in turn as the reference camera. Our aim is to obtain a
reliable foreground segmentation of each moving object along with it’s depth representation.
Mathematically, the aim to assign an accurate depth value to each pixel p from a set of
depth values DI =

{
d1, ...,d|DI |−1,U

}
and DO =

{
d1, ...,d|DO |−1,U

}
and assign a layer

label from a set of label values L =
{

l1, ..., l|L |
}

. Each di is obtained by sampling the
optical ray from the camera and U is an unknown depth value to handle occlusions and to
refine the object segmentation. If a pixel in the image is assigned a depth label value U the
pixel is removed from the segmentation of the dynamic object. We assume that the depth
of a particular pixel lies within the given threshold around the initial estimate as depicted
in Figure 4.9 and varies depending upon the regions RI or RO. Hence the depth labels are
divided in two sets, one for the region RI (DI) and other for RO (DO) such that |DI|< |DO|.



86 Dense Reconstruction of Real-world Dynamic Scenes

4.5.2 Proposed Approach

We formulate the computation of depth at each point as an energy minimization of the
cost function defined in Eq. (4.1). This equation is specifically designed to refine the
reconstruction and segmentation and is used to estimate a view-dependent depth map for
each dynamic object with respect to each camera.

E(l,d) = λdataEdata(d)+λcontrastEcontrast(l)+λsmoothEsmooth(l,d) (4.1)

where, d is the depth at each pixel for our dynamic object for the region RI + RO and can
be assigned Uand l is the layer label for multiple objects to refine object segmentation.
The equation consist of three terms: the data term is for the photo-consistency scores,
the smoothness term is to avoid sudden peaks in depth and maintain the consistency and
the contrast term is to identify the object boundaries. Data and smoothness terms are
common to solve reconstruction problems [23] and the contrast term is used for segmentation
[87] to encourage depth/layer discontinuities coincide with discontinuities in appearance.
This is a view-dependent or per-view optimization of depth and the depth estimates per
view will be combined to obtain an optimal surface reconstruction using Poisson surface
reconstruction[81]. By performing the layered-depth estimation in a view-dependent manner,
an accurate segmentation and reconstruction can be obtained in spite of calibration errors.

Matching term

The matching term encourages the reconstructed surface to be photo-consistent across multi-
ple views. This is based on the idea that correct depth hypotheses yield similar appearances
across the images in which they are visible, while incorrect depth hypotheses usually result
in inconsistent projected appearances.

Several confidence measures for stereo matching have been proposed in the literature.
An evaluation of existing confidence measures against ground-truth was performed in [72].
Robust photo-consistency scores were introduced to handle problems like uniform regions,
repetitive appearance in the state-of-the-art measures for various applications in computer
vision. A maximum likelihood measure was initially introduced in [111] using sum-of-
squared-differences to measure the photo-consistency between images. This measure was
generalized to the normalized-cross correlation (NCC) function to obtain a probability density
function for disparity given cost by assuming that the cost follows a normal distribution and
that the disparity prior is uniform as proposed in [72]. This gives a good photo-consistency
measure for wide-baseline multi-view datasets because of its ability to obtain a high number
of correct matches and preserve boundaries. Hence to measure the photo-consistency, a data
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Fig. 4.10 Illustration of matching and smoothness term for the energy minimization

term score based on this measure is used, as illustrated in Figure 4.10, given by:

Edata(d) = ∑
p∈NP

edata(p,dp) =

M(p,q) = ∑i∈NC
m(p,q), if dp ̸=U

MU , if dp =U
(4.2)

where NP is the set of all pixels p, m() is the confidence measure defined in equation 4.3, MU

is the fixed cost of labelling a pixel unknown and q = Π(p,dp) denotes the projection of the
hypothesized point P in an auxiliary camera where P is the coordinates of 3D point along
the optical ray passing through pixel p located at a distance dp from the reference camera.
NC is the set of most photo-consistent pairs with reference camera decided by the number
of correct feature matches. The image pairs above a certain threshold are selected as most
photo-consistent pairs with reference camera and the threshold is set to half of the maximum
number of correspondences between an image pair for a particular time instant.

For textured scenes NCC over a squared window with different sizes is a common choice
[156]. The NCC values range from -1 to 1 which are then mapped to non-negative values by
using the function 1−NCC. The maximum likelihood measure[111] generalized to NCC to
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obtain a probability density function is defined as:

m(p,q) =
exp cmin

2σ2
i

∑(p,q)∈NI exp−(1−NCC(p,q))
2σ2

i

(4.3)

where σ2
i is the noise variance for each auxiliary camera i; this parameter was fixed to 0.3.

NI denotes the set of interacting pixels in NP. cmin is the minimum cost for a pixel obtained
by evaluating the function (1−NCC(., .)) on a W ×W window, with W = 15. NCC() is
defined as:

NCC(p,q) =
∑k∈W (IL(pk,qk)−µL)(IR(pk −d,qk)−µR)

σLσR
(4.4)

where, IL and IR are the image pair, µL and µR are the means and σL and σR are the standard
deviations of all pixels in the square window for the image pair.

Contrast term

The contrast term encourages layer discontinuities to occur at high contrast locations. This
naturally encourages low contrast regions to coalesce and favours discontinuities to follow
strong edges. Object boundaries in images tend to align with contours of high contrast and it
is desirable to represent this as a constraint in surface reconstruction. The simplest choice
for the contrast term would be a squared Euclidean color distance, but this would yield a
contrast term encouraging layer discontinuities to follow any edge in the image regardless
of whether it is weak or strong. Better performance can be obtained by using combining
the edge information with contrast-likelihood in the image [87]. A modified version of this
interpretation is used in our formulation to preserve the edges through Bilateral filtering
[174] instead of Gaussian filtering.

Econtrast(l) = ∑
p,q∈NI

econtrast(p,q, lp, lq) (4.5)

econtrast(p,q, lp, lq) =

0, if (lp = lq)
1

1+ε
(ε + exp−J(p,q)), otherwise

(4.6)

∥·∥ is the L2 norm and ε = 1. To improve the segmentation quality J(p,q) is defined as:

J(p,q) =
∥B(p)−B(q)∥2

2σ2
pqo2

pq
(4.7)
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where B(.) represents the bilateral filter, opq is the Euclidean distance between p and q, and
σpq is defined below:

σpq =

〈
∥B(p)−B(p)∥2

o2
pq

〉
(4.8)

This term enables removal of regions with low photo-consistency scores and weak edges,
this helps in estimating the object boundaries.

Smoothness term

Smoothness is useful in situations where matching constraints are weak (low photo-consistency
scores) and insufficient to produce an accurate reconstruction without the support from neigh-
bouring pixels. This term is same as [62] and to ensure that the depth labels vary smoothly
within the object reducing noise and peaks in the reconstructed surface. This is useful when
the photo-consistency score is low and insufficient to assign depth to a pixel.

Esmooth(l,d) = ∑
(p,q)∈N

esmooth(lp,dp, lq,dq) (4.9)

esmooth(lp,dp, lq,dq) =


min(

∣∣dp −dq
∣∣ ,dmax), if lp = lq and dp,dq ̸= U

0, if lp = lq and dp,dq = U

dmax, otherwise

(4.10)

dmax is set to 50 times the size of the depth sampling step defined in Section 4.5.1 for
all datasets. Such a distance is discontinuity preserving as it does not over-penalize large
discontinuities; this is known to be superior to simpler non-discontinuity functions[25].
This term encourages unknown features to coalesce within each object and regularizes the
reconstruction of regions with weak image support. The smoothness term reduces the noise in
the reconstructed surface. An example of surface reconstruction with and without smoothness
term for Odzemok dataset is shown in Figure 4.10. Depth reconstruction with smoothness
has reduced noise in the object, making the shape estimate more realistic.

4.5.3 Optimization of Reconstruction and Segmentation

Optimization of the energy defined by Eq. (4.1) is known to be NP-hard. However, The
energy minimization for Eq. (4.1) is performed by using the α-expansion move algorithm
from [25] based on graph-cuts. We choose graph cuts because of its strong optimality
properties over belief propagation [171]. Graph-cut using the min-cut/max-flow algorithm is
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used to obtain a local optimum [24]. The α-expansion for a pixel p is performed by iterating
through the set of labels in L ×DI , if p ∈ RI and L ×DO, if p ∈ RO until the energy cannot
be decreased. Each α-expansion iteration can be solved exactly by performing a single
graph-cut using the min-cut/max-flow algorithm [24]. Convergence is achieved after 4 or 5
iterations. After convergence of the algorithm, the result obtained is guaranteed to be a strong
local optimum [25]. For all experiments reported in this chapter, the α-expansion algorithm
was initialized with the initial coarse reconstruction estimate; convergence has been found
to be insensitive to the choice of initialization. A final model is obtained by merging the
view-dependent depth representations through the Poisson surface reconstruction algorithm
as explained in next Section.

4.5.4 3D Model Generation

Final model generation is performed by merging the view-dependent depth estimates for each
camera view into a single global shape representation using Poisson surface reconstruction
[81]. The algorithm produces a water-tight reconstruction and eliminates the redundancy
contained in the view-dependent meshes. The algorithm cannot be directly applied because
of the noise and missing data in the view dependant meshes which tends to produce large
protrusions. Vlasic et al. compensated for missing data in the final mesh by using the
points from visual hull [185]. In our case the initial coarse reconstruction is not accurate
enough to be used directly for view-dependent reconstructions. Instead a two-step Poisson
surface reconstruction is performed. In the first step, the points from view dependent
depth maps are refined to remove noise and a reconstruction is obtained with protrusions
at occluded regions. In the second step, protrusions are removed by adding initial coarse
reconstruction sample points located inside the reconstruction obtained at the first pass to
the view-dependent sample points. This effectively reduces the addition of points to badly
reconstructed areas, thus removing protrusions without deteriorating correctly reconstructed
regions. Vertex connectivity is decided based on the layer segmentation and thresholding
of the angle separating the line segment connecting 3D surface points defined by pairs of
neighbouring pixels and the optical ray passing through the midpoint of the pixel pair (a
threshold of 80◦ is used). This allows pixel belonging to different layers or located at a depth
discontinuity to be correctly converted into separate mesh components. It should be noted
that the Poisson surface reconstruction takes as input an oriented set of points while the depth
recovered is not orientated. Orientation is estimated based on neighbouring pixels.
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Dataset Number of Cameras Number of frames Image resolution Baseline
Dance1 7 (all static) 250 1920×1080 15 degrees

Magician 6 (all moving) 6900 960×544 40-55 degrees
Dance2 8 (all static) 125 1920×1080 45 degrees

Odzemok 8 (2 moving) 250 1920×1080 15 degrees
Cathedral 8 (all static) 143 1920×1080 45 degrees
Juggler 6 (all moving) 3500 960×544 25-35 degrees

Table 4.1 Characteristic properties of all the datasets used for evaluation.

4.6 Results and Evaluation

Evaluation is performed using publicly available research datasets: Indoor and Outdoor
dataset with simple background (Dance2 and Cathedral), Indoor datasets with cluttered
background (Odzemok and Dance1) and Indoor and Outdoor datasets captured with moving
hand-held cameras (Magician and Juggler) [15]. The detailed characteristics of these datasets
are given in Table 4.1 and the parameter settings for Eq.(4.1) are summarized in Table 4.2.

The framework explained in Section 4.3 is applied to all datasets, starting from sparse
reconstruction followed by clustering and initial coarse reconstruction of dynamic objects
which is then optimized using the proposed joint segmentation and reconstruction approach.
The parameters for the experiments are shown in Table 4.2. Most existing methods do not
perform simultaneous segmentation and reconstruction, therefore the method is compared to
two state of the art approaches Furukawa and Ponce [51] for wide-baseline reconstruction
and Guillemaut and Hilton [62] for joint reconstruction and segmentation. Both of these
approaches are top performers on the Middlebury for multi-view reconstruction of wide-
baseline views [156].

Quantitative evaluation of the 3D dynamic scene reconstruction against ground-truth
would be valuable to validate the method. However ground-truth data in reconstruction is
currently not available and as with other work, currently the only mechanism available for
this is through simulated data, which does not represent the complexity of real scenes. The
comparison is performed against two state-of-the-art methods explained below:

Guillemaut [62]: This approach requires an initial coarse foreground segmentation retrieved
by differencing against a static background plate to obtain a visual hull required as a prior for
reconstruction. In the proposed approach we do not assume a known background allowing
the use of moving cameras. We modified the Guillemaut method by assigning the coefficient
of the color term to be zero because no prior knowledge of the background is assumed and
this approach is initialized using our initial coarse reconstruction instead of the visual hull.
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Dataset λdata λsmooth λcontrast
Dance1 1.0 0.01 2.0

Magician 1.0 0.02 6.0
Dance2 1.0 0.01 2.0

Odzemok 1.0 0.01 2.0
Cathedral 1.0 0.02 8.0
Juggler 1.0 0.02 8.0

Table 4.2 Parameter settings used in Equation 4.1 for view-dependent reconstruction of all the
datasets. The parameters for outdoor and moving hand-held camera sequences are same and
parameters for indoor sequences captured with static and moving cameras remain consistent.

Furukawa [51]: This represents a state-of-the-art multi-view wide-baseline stereo approach.
It takes multi-view images as input and generates dense reconstruction of the scene. Furukawa
[51] does not refine the segmentation but gives a 3D point-cloud which is converted into a
mesh using Poisson surface reconstruction.

4.6.1 Segmentation Results

The segmentation results from the proposed approach are compared against the segmentation
from Guillemaut and Hilton [62] and the ground-truth. Ground-truth is obtained by manually
labelling the foreground for all datasets except Juggler and Magician where ground-truth is
available online.

Qualitative Results

The segmentation results for two frames from each dataset are shown in Figure 4.11 for indoor
datasets and Figure 4.12 for outdoor datasets. Guillemaut requires visual hull initialization,
in this case the proposed initial coarse reconstruction is obtained from the sparse feature
matches and deviates from the actual object boundaries as shown in Figure 4.8. This results
in less accurate segmentation compared to the proposed approach which disambiguates the
problem by improving the contrast and data terms in the energy formulation. The artefacts
with respect to ground-truth in the proposed approach are from shadow areas and occlusions.

Quantitative Evaluation

To perform the quantitative evaluation of the segmentation the HitRatio, BkgRatio and
OverlapRatio as defined in [158] is measured against the ground-truth pixels. Three criterion
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Fig. 4.11 Results for a pair of images from indoor datasets: 2nd −4th column: Segmentation
(Red represents true negatives and green represents false positives compared to the ground-
truth)
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Fig. 4.12 Results for a pair of images from outdoor datasets: 2nd −4th column: Segmentation
(Red represents true negatives and green represents false positives compared to the ground-
truth)

are defined as follows:

HitRatio = |Result
⋂

GT |/ |GT |
BkgRatio = |Result −GT |/ |Result|

OverlapRatio = |Result
⋂

GT |/ |Result
⋃

GT |
(4.11)

where GT is the ground-truth segmentation image and Result is the final segmentation image
obtained using various approaches. The ratio is calculated by counting the number of pixels
in the numerator and denominator of the criterion defined above. The results are shown
in Table 4.3 for all the datasets. The comparison parameters are averaged over the entire
sequence to ensure the accuracy of the result. Higher hit, overlap ratio and lower background
ratio represents better segmentation. The HitRatio is the ratio of true positive in the result
with the ground-truth. The OverlapRatio is the ratio of true positives in the result with
the sum of result and ground-truth. The ratios for the proposed approach are higher than
Guillemaut for all datasets, generally significantly higher for more complex datasets like
outdoor scenes or scenes captured with only hand-held moving cameras. This demonstrates
the robustness of the proposed approach to general dynamic scene segmentation compared
to Guillemaut as seen in Figure 4.11 and 4.12. The BkgRatio measures the proportion of
result which actually belongs to background i.e. false positives in the segmentation. In
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Dataset Method HitRatio BkgRatio Overlap

Dance1 Ours 0.995 0.023 0.947
Guillemaut 0.993 0.042 0.928

Magician Ours 0.887 0.022 0.855
Guillemaut 0.663 0.018 0.595

Dance2 Ours 0.994 0.020 0.963
Guillemaut 0.992 0.031 0.941

Odzemok Ours 0.899 0.381 0.611
Guillemaut 0.895 0.507 0.469

Cathedral Ours 0.891 0.021 0.849
Guillemaut 0.796 0.015 0.745

Juggler Ours 0.879 0.025 0.841
Guillemaut 0.646 0.038 0.577

Table 4.3 Segmentation performance comparison for all datasets (best for each dataset is
highlighted in bold)

the case of Guillemaut this value is higher compared to the proposed approach for most
of the datasets. To conclude the segmentation obtained by the proposed approach vs. a
state-of-the-art technique which assumes static cameras and a known background plate is
better in quality with higher hit, overlap ratio and lower background ratio.

4.6.2 Reconstruction Results

We have compared our results with Guillemaut and Furukawa (explained in Section 4.6). For
fair comparisons all of the approaches are initialized with the same calibration and coarse
reconstruction obtained using the method explained in Section 4.4.

Qualitative Results

The depth maps for the proposed approach and Guillemaut are shown in Figure 4.13 for
indoor datasets and 4.14 for outdoor datasets. The colors in the depth map ranges from
yellow to red with red depicting closer to the camera. The consistency of depth maps in
the case of the proposed approach is better because of the use of an improved data term for
robustly matching between views and preserving edges.

The 3D models of the dynamic foreground obtained from the proposed approach are
compared with Guillemaut and Furukawa in Figure 4.15 for indoor and in Figure 4.16 for
outdoor datasets. For the Magician dataset Furukawa gives very few points on a small part of
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Fig. 4.13 Depth results for a pair of images from Indoor datasets: 2nd −3rd column: Depth



4.6 Results and Evaluation 97

Fig. 4.14 Depth results for a pair of images from Outdoor datasets: 2nd −3rd column: Depth

the object in the reconstruction due to the complexity of the dataset. Results are compared
closely with Guillemaut in Figure 4.17. Reduced noise is observed in the reconstructed
surface and the limb of the object is successfully recovered for proposed approach compared
to Guillemaut. In Figure 4.15 and 4.16 the meshes obtained by Furukawa do not have clear
boundaries because the method is not designed to refine the segmentation of the object.
The meshes obtained from the proposed approach are visibly more accurate compared to
the other techniques especially in the case of outdoor datasets. The mislabellings in the
initial coarse reconstruction in both the figures are recovered in the final reconstruction using
the proposed method. Some errors in the mesh reconstruction are present due to camera
noise, uniform textures and similarity to the background. Comparison of reconstruction
obtained using initial coarse reconstruction is shown against visual hull based initialization
in Figure 4.18. Visual hull is obtained using manual segmentation in each view. The initial
coarse reconstruction is obtained using the sparse features. In case of absence of features
on the leg of object we obtain incomplete reconstruction. To illustrate the usefulness of
joint optimization we intialize it using visual hull at that frame to obtain a more complete
reconstruciton. Reconstruction results for the Juggler sequence captured using only moving
cameras are shown in Figure 4.19 for frames ranging from 100 to 150.
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Fig. 4.15 Reconstruction results for indoor datasets: 1st −4th column: Meshes and 5th −6th

column: Difference meshes against proposed approach with color coded error in cms and 7th

is the textured mesh.
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Fig. 4.16 Results for outdoor datasets: 1st − 4th column: Meshes and 5th − 6th column:
Difference meshes against proposed approach with color coded error in cms and 7th is
textured mesh.

Fig. 4.17 Reconstruction result comparison against Guillemaut for Magician dataset
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Fig. 4.18 Reconstruction results using proposed method initialized with initial coarse recon-
struction against visual hull based initializatio for Odzemok dataset

Fig. 4.19 Result for Juggler sequence: Original images from one view with frame numbers
and mesh reconstructions alternatively

Quantitative Evaluation

Due to the absence of ground-truth 3D models for the datasets the accuracy evaluation is
limited to the qualitative analysis. In this section we compare the computational efficiency
of different approaches against the proposed method. The run-time per frame is shown in
Table 4.4. The speed of the proposed approach is slightly lower than Furukawa (which does
not perform segmentation) and the improvement in the speed for the proposed approach is
approximately 25% compared to Guillemaut.

The computation times can be improved using an alternative faster discrete optimization
approach proposed recently. The method described in [90] can be used as an efficient solver
to improve the timings further.



4.7 Limitations 101

Dataset Furukawa[51] Guillemaut[62] Proposed
Dance1 326 s 448 s 295 s

Magician 311 s 452 s 377 s
Dance2 502 s 655 s 471 s

Odzemok 381 s 498 s 364 s
Cathedral 525 s 679 s 501 s
Juggler 399 s 466 s 374 s

Table 4.4 Comparison of computational efficiency for all datasets (time in seconds (s))

4.7 Limitations

The proposed method gives per frame reconstruction of the sequence, giving temporally
incoherent shape and segmentation. This inconsistency also introduces errors in frames like
missing limbs etc. for dynamic objects as shown in Figure 4.20. To handle such errors there
is a need to introduce temporal alignment in the framework.

Fig. 4.20 Limitations of proposed method: Missing data in reconstruction of Juggler dataset
for two different frames.

Another problem is the quality of the reconstruction and segmentation. Although the
proposed approach performs better than the state-of-the-art techniques, the quality of results
is far from perfect. The joint refinement framework needs to be improved to obtain higher
quality output. These problems will be handled in the next chapter by introduction of temporal
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coherence and shape constraint in the system to improve the quality of reconstruction and
segmentation. Also, the reconstruction is limited to dynamic objects in the scene in this work
and the aim is to combine the dynamic scene reconstruction with shape estimate of the static
parts of the scenes to obtain full scene reconstruction from the sequence.

4.8 Conclusion

This chapter introduced a novel technique to automatically segment and reconstruct dy-
namic objects captured from multiple moving cameras in general dynamic uncontrolled
environments without any prior on background appearance or structure. This overcomes the
common limitations of previous dynamic scene reconstruction methods which assume static
backgrounds and known background appearance to allow prior segmentation of the scene.
An automatic approach to initialize the dynamic scene reconstruction from the sparse 3D
points obtained using SFD features (introduced in Chapter 3) to give good coverage of the
dynamic objects in the scene is introduced. The proposed automatic initialization was used to
identify and initialize the segment and reconstruction of multiple dynamic objects. The initial
coarse approximation is refined using a joint view-dependent optimization of segmentation
and reconstruction by a view-dependent graph-cut optimization using the photo-consistency
and contrast cues from wide-baseline images.

This overcomes the limitation of previous reconstruction approaches which assume
prior knowledge of either the empty background scene appearance or prior background
scene reconstruction. The proposed approach allows unsupervised reconstruction without
prior information on scene appearance or structure. The segmentation and reconstruction
accuracy are significantly improved over previous methods allows application to more general
dynamic scenes. The improvement in quality is because of introduction of error-tolerant
photo-consistency scores along with contrast information which introduces affinity towards
strong foreground edges. Tests on challenging datasets demonstrate improvements in quality
of reconstruction and segmentation compared to state-of-the-art methods.

The subsequent chapters in this thesis are build on the approach introduced in this
chapter to address the limitations identified. As explained in Section 4.7, limitations of
proposed framework of per frame reconstruction, temporal incoherence and limited quality
of reconstruction and segmentation will be handled in Chapter 5.



Chapter 5

Temporally Coherent Scene
Reconstruction

5.1 Introduction

General dynamic scene reconstruction introduced in Chapter 4 operates on a frame-by-
frame basis and generates temporally incoherent results resulting in limited quality of the
reconstruction and segmentation. In this work we build on the concept introduced in Chapter
4 by exploiting temporal coherence of the scene to overcome visual ambiguities inherent
in single frame reconstruction and multi-view segmentation methods for general scenes.
This is illustrated in Figure 5.1 where the resulting 4D scene reconstruction has temporally
coherent labels and surface correspondence for each object. Temporal coherence refers to
the correlation between 3D points of all objects observed at various time instants. Temporal
information and shape constraints are introduced to extend the optimization framework
proposed in the previous chapter. This improves the quality of the reconstruction and produce
temporally coherent results. A complete scene reconstruction is produced by exploiting the
static redundancy in the scene.

A sparse-to-dense approach is used to estimate dense temporal correspondence and
surface reconstruction for non-rigid objects with no prior knowledge of scene structure or
camera calibration allowing reconstruction from multiple moving cameras. Initially sparse
3D feature points are robustly tracked from wide-baseline image correspondence using spatio-
temporal information to obtain sparse temporal correspondence and reconstruction. Sparse
3D feature correspondences are used to constrain optical flow estimation to obtain an initial
dense temporally consistent model of dynamic regions. The initial model is then refined
using a novel optimization framework using shape constraints for simultaneous multi-view
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segmentation and reconstruction of non-rigid objects. Shape constraints are introduced by
limiting the initial segmentation of the objects with geodesic star convexity. This enforces
the segmentation to be connected to seed points via geodesic paths to handle complex object
shapes [64]. The proposed approach overcomes constraints of existing methods allowing an
unsupervised temporally coherent 4D reconstruction of complete models for general scenes.
The scene is automatically decomposed into a set of spatio-temporally coherent objects as
shown in Figure 5.1. The contributions are as follows:

• Temporally coherent reconstruction of complex dynamic scenes.

• A framework for space-time sparse-to-dense segmentation and reconstruction.

• Optimization of dense reconstruction and segmentation using geodesic star convexity.

• Robust and computationally efficient reconstruction of dynamic scenes by exploiting
temporal coherence.

5.2 Related Work

5.2.1 Temporal Multi-view Reconstruction

Extensive research has been performed in multi-view reconstruction of dynamic scenes.
Reconstruction frameworks for general dynamic scenes commonly operate on a frame-by-
frame basis [51, 122] or are limited to simple scenes [58]. Most existing approaches process
each time frame independently due to the difficulty of simultaneously estimating temporal
correspondence for non-rigid objects. Independent per frame reconstruction can result in
errors due to the inherent visual ambiguity caused by occlusion and similar object appearance
for general scenes. Quantitative evaluation of state-of-the-art techniques for static object
reconstruction from multiple views was presented [156]. Research investigating spatio-
temporal reconstruction across multiple frames [58, 63] requires accurate initialization, is
limited to simple scenes and does not produce temporally coherent 4D models. A number
of approaches that use temporal information [14, 96, 99] either require a large number of
closely spaced cameras or bi-layer segmentation [77, 199] as a constraint for complete
reconstruction. Other approaches for reconstruction of general scenes from multiple hand-
held wide-baseline cameras [15, 170] exploit prior reconstruction of the background scene to
allow dynamic foreground segmentation and reconstruction. Recent approaches for spatio-
temporal reconstruction of multi-view data either work on indoor studio data [134] or for
dynamic reconstruction of crowd sourced data [76].
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Fig. 5.1 Temporally consistent scene reconstruction for Odzemok dataset color-coded to
show the scene object segmentation obtained.

A number of approaches have been introduced for joint optimization. However, these are
either limited to static scenes [66, 193] or process each frame independently thereby failing
to enforce temporal consistency [30, 62, 122]. A joint formulation for multi-view video was
proposed for sports data and indoor sequences in [62] and for challenging outdoor scenes in
[122] . Recent work proposed joint reconstruction and segmentation on monocular video
achieving semantic segmentation of static scenes [92]. Other joint segmentation and recon-
struction approaches that use temporal information based on patch refinement [135, 158]
work only for rigid objects. An approach based on optical flow and graph-cuts was shown to
work well for non-rigid objects in indoor settings but requires silhouettes and is computation-
ally expensive [63]. Practical application of temporally coherent joint estimation requires
approaches that work on non-rigid objects for general scenes in uncontrolled environments.
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Methods to estimate 3D scene flow have been reported in the literature [113]. However
existing approaches are limited to narrow-baseline correspondence for dynamic scenes. Scene
flow approaches dependent on optical flow [16, 187] require an accurate motion estimate for
most of the pixels which fails in the case of large motion.

The approach presented in this chapter is for general dynamic indoor or outdoor scenes
with large non-rigid motions and no prior knowledge of scene structure. The target scenes
are challenging natural outdoor scenes captured with only hand-held cameras, repetitive
texture, uncontrolled illumination, fast scene motion, and large capture volume. Temporal
correspondence and reconstruction are simultaneously estimated to produce a 4D model of the
complete scene with both static and dynamic objects. The proposed approach overcomes the
limitations of previous methods enabling robust wide-baseline spatio-temporal reconstruction
and segmentation of general scenes. Temporal correspondence is exploited to overcome
visual ambiguities giving improved reconstruction together with temporally coherent 4D
scene models.

5.2.2 Temporally Consistent Multi-view Video Segmentation

In the field of image segmentation, approaches have been proposed to provide impressive
temporally consistent video segmentation [60, 127, 136, 198]. Hierarchical segmentation
based on graphs was proposed in [60]. Directed acyclic graphs were used for object proposal
followed by segmentation in [198] and [127, 136] used optical flow. All of these methods
work only for monocular videos. Recently a number of approaches have been proposed for
multi-view foreground object segmentation exploiting appearance similarity between views
[38, 89, 98, 196] . An approach that propagates segmentation coherence information in both
space and time, allowing evidences in one image to be shared over the complete set was pro-
posed by [39]. These approaches assume a static background and different color distributions
for the foreground and background which limits applicability for general complex scenes
and non-rigid objects.
To address this issue a novel method for spatio-temporal multi-view segmentation of dynamic
scenes using shape constraints is introduced. The proposed approach performs multi-view
video segmentation by initializing the foreground object model using spatio-temporal infor-
mation from wide-baseline feature correspondence followed by a multi-layer optimization
framework using geodesic star convexity to constrain the segmentation. Geodesic star con-
vexity has previously been shown to give good results for single image segmentation of
complex shapes [64] with manual interaction. The proposed multi-view formulation naturally
enforces coherent segmentation between views and also resolves ambiguities such as the
similarity of background and foreground in isolated views.
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Fig. 5.2 Overview of temporally consistent scene reconstruction framework

5.2.3 Summary of Previous Work

Existing dense reconstruction algorithms need a strong initial prior for the solution to
converge. Priors used in previous work include background appearance, scene structure and
initial segmentation. These methods give per frame reconstruction of the scene, which is
temporally incoherent. In this chapter we propose to obtain temporally coherent segmentation
and reconstruction of dynamic scenes captured using uncalibrated multi-view static or
moving cameras automatically. The static and dynamic objects in the scene are identified for
simultaneous segmentation and reconstruction. Temporal coherence is introduced to improve
the quality of the reconstruction and a geodesic star convexity constraint is used to improve
the quality of segmentation. The static and dynamic elements are fused automatically in
both the spatial and temporal domain to obtain the final 4D scene reconstruction. Figure 5.2
presents an overview of the temporally coherent reconstruction framework.

5.3 Methodology

This work is motivated by the limitations of existing multi-view reconstruction methods
which either work independently at each frame resulting in errors due to visual ambiguity and
occlusion [51, 62, 122], or commonly require restrictive assumptions on scene complexity and
structure [63, 170], or gives reconstruction from single view video [151]. We address these
issues by introducing temporal coherence in the reconstruction and geodesic star convexity
in segmentation to reduce ambiguity, ensure consistent non-rigid structure initialization at
successive frames and improve shape estimate quality.
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Fig. 5.3 Overview of stages for estimation of an initial dense scene reconstruction.

5.3.1 Overview

A novel automatic multi-object dynamic segmentation and reconstruction method based on
the geodesic star convexity shape constraint is proposed to obtain a 4D model of the scene
including both dynamic and static objects. An overview of the framework is presented in
Figure 5.2 :
Sparse reconstruction: The sparse point-cloud based on SFD features is clustered in 3D
[152] with each cluster representing a unique foreground object as explained in Chapter 4.
Objects with insufficient detected features are reconstructed as part of the scene background.
Initial dense reconstruction of complete scene: Sparse reconstructions at each time instant
are clustered in 3D[38] to obtain an initial coarse object segmentation. This reconstruction
is refined using the framework explained in Section 5.3.3 to obtain segmentation and dense
reconstruction of each object.

Accurate reconstruction of the background is often challenging due to the lack of features,
repetitive texture, occlusion, texture-less regions and relatively narrow-baseline for distant
objects. A rough geometric proxy of the background is created by computing the minimum
oriented bounding box for the sparse 3D point-cloud using principal component analysis
(PCA) [37]. Principal component analysis (PCA) is applied to the sparse 3D point-cloud
obtained in Chapter 3 to retrieve the background. Different methods are used for background
estimation for indoor and outdoor scenes. For outdoor scenes a plane is inserted at infinity
perpendicular to the ground plane as there are no consistent constraints like room, walls,
corridors etc. in such datasets. For indoor scenes the Manhattan world assumption [36] is
applied and the process used for estimation of the background is described below:

• The centroid A = (a0,a1,a2) and normalized covariance of the point-cloud are es-
timated to compute the eigenvectors #»ev = (ev0,ev1,ev2)) for the covariance matrix
of the point-cloud (PCA). We define the reference system as R= (ev0,ev1,ev0× ev1)
such that: ev0× ev1 = +/− ev2. The sparse points are mapped in reference frame
using R as the rotation matrix and A as the translation.
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Fig. 5.4 Sparse temporal dynamic feature tracking algorithm: Results on Odzemok dataset;
Min and Max is the minimum and maximum movement in the 3D points respectively.

• The rotation and translation is calculated using the eigenvectors to place a box in
correct location. The minimum and maximum values of coordinates in x, y and z
direction for the transformed cloud are computed to determine the minimum oriented
box width, height, and depth.

• Given a box centred at the origin with size defined above the rotation R and translation
R × CP + A is applied, where CP is the middle of the minimum and maximum points.

This background reconstruction is a rough geometric proxy estimate of the background of
the scene but gives reasonable results to provide complete scene reconstruction.

The dense reconstruction of the foreground objects and background are combined to
obtain a full scene reconstruction at the first time instant. The algorithm is shown in Figure
5.3. For consecutive time instants only dynamic objects are reconstructed and segmentation
and reconstruction of static objects is retained which reduces computational complexity.
Temporally coherent reconstruction of dynamic objects: Temporal coherence is intro-

duced in the framework to initialize the coarse reconstruction and obtain frame-to-frame
dense correspondences. Dynamic object regions are detected at each time instant by sparse
temporal correspondence of SFD features at successive frames. Sparse temporal feature
correspondence allows propagation of the dense reconstruction for each dynamic object
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Fig. 5.5 Sparse temporal dynamic feature tracking for Juggler dataset captured with only
moving cameras. Min and Max is the minimum and maximum movement in the 3D points
respectively.

to obtain an initial approximation (Section 5.3.2). The initial estimate is refined using a
joint optimization of segmentation and reconstruction based on geodesic star convexity
(Section 5.3.3). A single 3D model for each dynamic object is obtained by fusion of the
view-dependent depth maps using Poisson surface reconstruction [81].

Subsequent sections present the novel contributions of this work in identifying the
dynamic points, initialization using space-time information and refinement using geodesic
star convexity to obtain a dense reconstruction. The approach is demonstrated to outperform
state-of-the-art dynamic scene reconstruction and gives a temporally coherent 4D model.

5.3.2 Initial Temporally Coherent Reconstruction

Once the static scene reconstruction is obtained for the first frame, temporally coherent
dynamic scene reconstruction is performed at successive time instants. Dynamic regions are
identified using temporal correspondence of sparse 3D features. These points are used to
obtain an initial dense model for the dynamic objects based on optical flow correspondence
estimation. The initial coarse reconstruction for each dynamic region is refined in the
subsequent optimization step with respect to each camera view. Dynamic scene objects are
identified from the temporal correspondence of sparse feature points. Sparse correspondence
is then used to propagate an initial model of the moving object for refinement. Figure 5.4
presents the sparse reconstruction and temporal correspondence.
Sparse temporal dynamic feature tracking: Numerous approaches have been proposed to
track moving objects in 2D using either features or optical flow. However these methods
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Fig. 5.6 Spatio-temporal consistency check for 3D tracking for Odzemok dataset.

may fail in the case of occlusion, movement parallel to the view direction, large motions
and moving cameras. To overcome these limitations the sparse 3D feature points obtained
using SFD from multiple wide-baseline views are matched at each time instant. The use of
sparse 3D features is robust to large non-rigid motion, occlusions and camera movement.
Sparse 3D feature matches between consecutive time instants are back-projected to each
view. These features are matched temporally using a SIFT descriptor to identify the moving
points. Robust matching is achieved by enforcing multi-view consistency for the temporal
feature correspondence in each view as illustrated in Figure 5.6. Each match must satisfy the
constraint:∥∥Ht,v(p)+ut,v+1(p+Ht,v(p))−ut,v(p)−Ht,v+1(p+ut,v(p))

∥∥< ε

where p is the feature image point in view v at frame t, Ht,v(p) is the disparity at frame t
from views v and v+ 1, ut,v(p) is the temporal correspondence from frames t to t + 1 for
view v. The multi-view consistency check ensures that correspondences between any two
views remain temporally consistent for successive frames. Matches in the 2D domain are
sensitive to camera movement and occlusion, hence the set of refined matches are mapped in
3D to make the system robust to camera motion. The Frobenius norm is applied on the 3D
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Fig. 5.7 Overview of initial sparse-to-dense model reconstruction for the Odzemok dataset.

point gradients in all directions to obtain the ‘net’ motion at each sparse point.
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vx vy
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√
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y +w2
x +w2

y (5.1)

A 3D extension of the 2D frobenius norm [198] is used to calculate the motion. The ‘net’
motion between two 3D points for consecutive time instants are ranked, and top and bottom
5 percentile values removed. Median filtering is then applied to identify the dynamic features.
Figure 5.5 shows an example with moving camera.

Sparse-to-dense model reconstruction: Dynamic 3D feature points are used to initialize
the segmentation and reconstruction of the initial model. This avoids the assumption of
static backgrounds and prior scene segmentation commonly used to initialize multi-view
reconstruction with a coarse visual hull approximation [62]. Temporal coherence also
provides a more accurate initialization to overcome visual ambiguities at individual frames.
Figure 5.7 illustrates the use of temporal coherence for reconstruction initialization and
refinement. Dynamic feature correspondence is used to identify the mesh for each dynamic
object. This mesh is back projected on each view to obtain the region of interest(silhouette)
at each time instant. Dense optical flow [194] is performed on the projected mask(silhouette)
for each view in the temporal domain using the dynamic feature correspondences over time
as initialization. The dense multi-view wide-baseline correspondences from the previous
frame are propagated to the current frame using the information from the flow vectors to
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Fig. 5.8 Improvement in segmentation for the Odzemok dataset and reconstruction for the
Juggler dataset with temporal coherence (highlighted in yellow)

obtain dense multi-view matches in the current frame. The matches are triangulated in 3D to
obtain a refined 3D dense model of the dynamic object for the current frame.

For dynamic scenes, a new object may enter the scene or a new part may appear as the
object moves. To allow the introduction of new objects and object parts, information from
the cluster of sparse points is used for each dynamic object. The cluster corresponding to the
dynamic features is identified and static points are removed. This ensures that the set of new
points not only contain the dynamic features but also the unprocessed points which represent
new parts of the object. These points are added to the refined sparse model of the dynamic
object. To handle the new objects new clusters are detected at each time instant and consider
them as dynamic regions.

Once a set of dense 3D points is obtained for each dynamic object, Poisson surface
reconstruction is performed on the set of sparse points to obtain an initial coarse model of
each dynamic region R, which is subsequently refined using the optimization framework
(Section 5.3.3). Introduction of sparse-to-dense initial coarse reconstruction followed by the
optimization framework improves the quality of segmentation and reconstruction. Examples
of the improvement in segmentation and reconstruction for Odzemok and Juggler dataset are
shown in Figure 5.8. As observed limbs of the object can be retained by using information
from the previous frames in both the cases.



114 Temporally Coherent Scene Reconstruction

Fig. 5.9 Representation of star convexity: The left object depicts example of star convex
object, with a star center marked in green. The object on the right with a plausible star center
shows deviations from star convexity in the fine details.

5.3.3 Geodesic Star Convexity for Joint Refinement

Shape is a powerful cue for object recognition and segmentation. Shape models represented
as some kind of distance transform from a template have been used for category specific
segmentation [85]. Some works have introduced generic connectivity constraints for segmen-
tation showing that obtaining globally optimal solutions under the connectivity constraint
is NP-hard [184]. Veksler et al. have used shape constraint in segmentation framework
by enforcing star convexity prior on the segmentation, and globally optimal solutions are
achieved subject to this constraint [181]. The star convexity constraint ensures connectivity to
seed points, and is a stronger assumption than plain connectivity. An example of star convex
object is shown in Figure 5.9 along with a failure case for non-rigid articulate object. To
handle more complex objects the idea of geodesic forests was introduced to obtain globally
optimal solutions in [64]. The main focus was to introduce shape constraints in interactive
segmentation, by means of a geodesic star convexity prior. The notion of connectivity was
extended from Euclidean to geodesic as geodesic paths can bend and adapt to image data as
opposed to straight Euclidean rays, thus extending visibility and reducing the number of star
centers required.
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In this work this concept is automatically applied in our joint segmentation and recon-
struction refinement framework. A novel shape constraint is introduced based on geodesic
star convexity which has previously been shown to give improved performance in interactive
image segmentation for structures with fine details (for example a peoples fingers or hair)[64].
The shape constraint is automatically initialized for each view from the initial segmentation.
The geodesic star convexity is integrated as a constraint on the energy minimization for
joint multi-view refinement. The shape constraint is based on the geodesic distance with
foreground object initialization (seeds) as star centers to which the object shape is restricted.
The union formed by multiple object seeds form a geodesic forest. This allows complex
shapes to be segmented. In this work to automatically initialize the segmentation the sparse
temporal feature correspondence are used as star centers (seeds) to build a geodesic forest
automatically. The region outside the initial coarse reconstruction of all dynamic objects
is initialized as the background seed for segmentation as shown in in Figure 5.11. The
shape of the dynamic object is restricted by this geodesic distance constraint that depends
on the image gradient. Comparison with existing methods for multi-view segmentation
demonstrates improvements in recovery of fine detail structure as illustrated in Figure 5.15.

Optimization based on Geodesic Star Convexity

Graph-cuts is used for joint refinement of reconstruction and segmentation. A graph structure
is built G = {V ,E } where vi ∈ V are the vertices and

{
vi,v j

}
∈ E . Each vertex vi represents

a pixel and the depth of the initial coarse reconstruction estimate is refined for each dynamic
object at a per pixel level. Our goal is to assign an accurate depth value from a set of
depth values D =

{
d1, ...,d|D |−1,U

}
and assign a layer label from a set of label values

L =
{

l1, ..., l|L |
}

to each pixel p for the region R of each dynamic object. Each di is
obtained by sampling the optical ray from the camera and U is an unknown depth value to
handle occlusions. Each edge ei is assigned a non-negative weight followed by optimization
of a joint cost function [62] for label (segmentation) and depth (reconstruction):

E(l,d) = λdataEdata(d)+λcontrastEcontrast(l)+λsmoothEsmooth(l,d)+λcolorEcolor(l) (5.2)

where, d is the depth at each pixel, l is the layer label for multiple objects and the cost
function terms are defined in section 5.3.3. This is solved subject to a geodesic star convexity
constraint on the labels l. A label l is star convex with respect to center c, if every point p ∈ l
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Fig. 5.10 Geodesic star convexity based segmentation: Left: Single star center and Right:
Multiple star centers. The error with single star center based segmentation is highlighted in
red.

is visible to a star center c via l in the image x which can be expressed as an energy cost:

E⋆(l|x,c) = ∑
p∈R

∑
q∈Γc,p

E⋆
p,q(lp, lq) (5.3)

∀q ∈ Γc,p, E⋆
p,q =

{
∞ if lp ̸= lq
0 otherwise

(5.4)

where ∀p ∈ R : p ∈ l ⇔ lp = 1 and Γc,p is the geodesic path joining p to the star center c
given by:

Γc,p = arg min
Γ∈Pc,p

L(Γ) (5.5)

where Pc,p denotes the set of all discrete paths between c and p and L(Γ) is the length of
discrete geodesic path as defined in [64]. In the case of image segmentation the gradients in
the underlying image provide information to compute the discrete paths between each pixel
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Fig. 5.11 Geodesic star convexity: A region R with star centers C connected with geodesic
distance Γc,p. Segmentation results with and without geodesic star convexity based optimiza-
tion are shown on the right for the Juggler dataset.

and star centers and L(Γ) is defined below:

L(Γ) =
ND−1

∑
i=1

√
(1−δg) j(Γi,Γi+1)2 +δg ∥▽I(Γi)∥2 (5.6)

where Γ is an arbitrary parametrized discrete path with ND pixels given by
{

Γ1,Γ2, · · ·ΓND
}

,
j(Γi,Γi+1) is the Euclidean distance between successive pixels, and the quantity

∥∥▽I(Γi)
∥∥2

is a finite difference approximation of the image gradient between the points
(
Γi,Γi+1). The

parameter weights δg the Euclidean distance with the geodesic length. Using the above
definition, one can define the geodesic distance as defined in Equation 5.5.

An extension of single star convexity is to use multiple stars to define a more general
class of shapes. Introduction of multiple star centers reduces the path lengths and increases
the visibility for objects with concavities like small limbs as shown in Figure 5.10. Hence
Equation 5.3 is extended to multiple stars. A label l is star convex with respect to center ci,
if every point p ∈ l is visible to a star center ci in set C = {c1, ...,cNT } via l in the image x,
where NT is the number of star centers [64]. This is expressed as an energy cost:

E⋆(l|x,C ) = ∑
p∈R

∑
q∈Γc,p

E⋆
p,q(lp, lq) (5.7)
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Fig. 5.12 Segmentation comparison results with no constraint, star convexity constraint and
geodesic star convexity constraint for Odzemok dataset.

In our case the all the correct temporal sparse feature correspondences are used as star centers,
hence the segmentation will include all the points which are visible to these sparse features
via geodesic distances in the region R, thereby employing the shape constraint. Since the star
centers are selected automatically, the method is unsupervised. Comparison of segmentation
constraint with geodesic multi-star convexity against no constrains and Euclidean multi-star
convexity constraint is shown in Figure 5.12. The figure demonstrates the usefulness of
the proposed approach with an improvement in segmentation quality on non-rigid complex
objects. The energy in the Equation 5.2 is minimized as follows:

min(l,d)
s.t.

E(l,d)
lεS⋆(C )

⇔ min
(l,d)

E(l,d)+E⋆(l|x,C ) (5.8)

where S⋆(C ) is the set of all shapes which lie within the geodesic distances with respect to
the centers in C . Optimization of eq. 5.8, subject to each pixel p in the region R being at a
geodesic distance Γc,p from the star centers in the set C , is performed using the α-expansion
algorithm for a pixel p by iterating through the set of labels in L ×D [25]. Graph-cut is
used to obtain a local optimum [24].
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Energy Cost Function

For completeness in this section each of the terms in Equation 5.2 are defined, these are
based on previous terms used for joint optimization over depth for each pixel introduced in
[122](Chapter 4), with modification of the color matching term to improve robustness and
extension to multiple labels.
Matching term: The data term for matching between views is specified as a measure of
photo-consistency as follows:

Edata(d) = ∑
p∈NP

edata(p,dp) =

M(p,q) = ∑i∈NC
m(p,q), if dp ̸= U

MU , if dp = U
(5.9)

where NP is the 4-connected neighbourhood of pixel p, MU is the fixed cost of labelling
a pixel unknown and q denotes the projection of the hypothesized point P in an auxiliary
camera where P is 3D point along the optical ray passing through pixel p located at a distance
dp from the reference camera. NC is the set of most photo-consistent pairs with reference
camera and m(p,q) is the inspired from [72].
Contrast term: The contrast term naturally encourages low contrast regions to coalesce into
layers and favours discontinuities to follow strong edges. It is defined as follows:

Econtrast(l) = ∑
p,q∈N

econtrast(p,q, lp, lq) (5.10)

econtrast(p,q, lp, lq) =

0, if (lp = lq)
1

1+ε
(ε + exp−J(p,q)), otherwise

(5.11)

∥·∥ is the L2 norm, ε = 1. S(p,q) is defined in Chapter 4, Equation 4.7.
Smoothness term: This term is defined as:

Esmooth(l,d) = ∑
(p,q)∈N

esmooth(lp,dp, lq,dq) (5.12)

esmooth(lp,dp, lq,dq) =


min(

∣∣dp −dq
∣∣ ,dmax), if lp = lq and dp,dq ̸= U

0, if lp = lq and dp,dq = U

dmax, otherwise

(5.13)

dmax is set to 50 times the size of the depth sampling step defined in Section 5.3.3 for all
datasets and the penalty is defined as a truncated linear distance within each layer. Such a
distance is discontinuity preserving as it does not over-penalize large discontinuities within a
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layer; this is known to be superior to simpler non-discontinuity functions [25]. This term
also encourages unknown features to coalesce within each layer.
Color term: The color term uses learnt Gaussian mixture models (GMM) for each layer or
group of layers following a similar distribution in order to assign the most likely layer label
at each pixel in the reference image. This term is computed using the negative log likelihood
[24] of the color models learned from the initially segmented foreground and background
regions. The star centers obtained from the sparse 3D features are foreground markers and
for background markers the region outside the projected initial coarse reconstruction is
considered for each view. The color term is defined as:

Ecolor(l) = ∑
p∈P

−logP(Ip|lp) (5.14)

where P(Ip|lp = li) denotes the probability at pixel p in the reference image belonging to
layer li. Existing methods have used a combination of global and local color models to
compute the probability [62], but the local color model is applicable to static layers only like
the background. In our case we handle moving hand-held cameras where the background
pixel changes. Hence a global color model is used for computing the probabilities. The
global color model for a layer li is defined as:

P(Ip|lp = li) =
Ki

∑
k=1

wikN(Ip|µikϕik) (5.15)

where N() is the normal distribution and the parameters wik, µik and ϕik represent the weight,
the mean and the covariance matrix of the kth component for layer li. Ki is the number of
components of the mixture model for layer li. The color models use Gaussian mixture models
with Ki = 10 components each for foreground/background mixed with uniform color models
in RGB color space. The models are not updated over time as our algorithm is only applied
to relatively short sequences (500 frames). For the processing of longer sequences, more
sophisticated algorithms could be used to model temporal variations in illuminations.

The improvements in the results using geodesic star convexity in the framework is shown
in Figure 5.12 and by using temporal coherence is shown in Figure 5.8. Figure 5.13 shows
improvements using geodesic shape constraint, temporal coherence and combined proposed
approach for Dance2 dataset. The segmentation is compared against ground-truth (publically
available), red pixels denote error in the segmentation. The quality of the segmentation results
obtained using the proposed approach by combining both GSC and temporal coherence is
improved.
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Fig. 5.13 Comparison of segmentation with introduction of temporal coherence, Geodesic star
convexity(GSC) and proposed method (GSC and temporal coherence) for Dance2 dataset.

The energy terms in the Equation 5.2 can be constrained temporally to improve the
performance further. Constraint can be applied on the pairwise terms as shown in [63] to
include temporal contrast and smoothness information in the optimization.

5.4 Results and Evaluation

The proposed system is tested on publicly available multi-view research datasets of indoor
and outdoor scenes: static data for segmentation comparison Couch, Chair and Car[89]; and
dynamic data for full evaluation Dance3[4DI], Office, Dance2, Odzemok, Magician and
Juggler [15]. Magician and Juggler from 6 moving hand-held cameras. The parameters used
for experiments for all datasets are listed in Table 5.1. The parameters are set empirically.

Datasets λdata λcontrast λsmooth λcolor
Magician/Dance3 1.0 12.5 .00125 1.5
Juggler 1.0 10.0 .001 0.8
Odzemok/Dance2/Office 1.0 7.5 .0025 1.5

Table 5.1 Parameter settings used in Equation 5.2 for reconstruction of all the datasets.

The evaluation performed using these datasets covers segmentation and reconstruction
comparison against state-of-the-art methods in multi-view segmentation [38, 89], reconstruc-
tion [51] and joint segmentation and reconstruction [63, 122].

5.4.1 Multi-view Segmentation Evaluation

Segmentation is evaluated against state-of-the-art methods for multi-view segmentation for
both static and dynamic data. Comparison is performed against ground-truth data for all
datasets. Ground-truth is obtained by manually labelling the foreground for Office, Dance2
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Fig. 5.14 Comparison of segmentation with Kowdle on benchmark static datasets using
geodesic star convexity.

and Odzemok dataset, and for other datasets ground-truth is available online. We initialize
all approaches by the same proposed initial coarse reconstruction for fair comparison.
Static scene segmentation methods: Comparison is performed against static multi-view
segmentation methods Kowdle [89] and Djelouah [38] for static scenes. The segmentation
is initialized as detailed in Section 5.3.1 followed by refinement using the constrained
optimization Section 5.3.3. Qualitative results are shown in Figure 5.14 and 5.15 for static
benchmark datasets. For quantitative evaluation the ratio of intersection to union with
ground-truth is measured as proposed in [89] and the comparison is shown in Table 5.2. The
segmentation quality and accuracy are comparable to the multi-view segmentation technique
Kowdle [89] and more accurate than Djelouah [38].
Dynamic scene segmentation methods: Comparison is performed against joint dynamic

scene segmentation and reconstruction per frame methods Mustafa [122] and Guillemaut
[63] for both static and dynamic scenes. Mustafa is the method from Chapter 4 with no
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Fig. 5.15 Comparison of segmentation on benchmark static datasets using geodesic star
convexity.

Dataset No of Views Kowdle Djelouah Guillemaut Mustafa Proposed
Couch 11 99.6±0.1 99.0±0.2 97.0±0.3 98.5±0.2 99.7 ± 0.3
Chair 18 99.2 ± 0.4 98.6±0.3 97.9±0.5 98.0±0.5 99.1±0.3
Car 44 98.0±0.7 97.0±0.8 95.0±0.7 97.6±0.3 98.6 ± 0.4

Table 5.2 Static segmentation comparison with existing methods on benchmark datasets

temporal information and Guillemaut[63] uses temporal information to improve the results.
The results for the proposed approach are obtained by applying the full pipeline with temporal
coherence as detailed in Section 5.3.

Qualitative results are shown in Figure 5.15 for static benchmark datasets and Figure
5.17 and 5.16 for dynamic scenes. Quantitative evaluation is performed same as for static
segmentation methods and the comparison for static datasets is shown in Table 5.2 and
in Table 5.3 for dynamic scenes. Results for multi-view segmentation of static scenes are
more accurate than Djelouah, Mustafa and Guillemaut and are comparable to Kowdle with
improved segmentation of some detail such as the back of the chair. For dynamic scenes
the geodesic star convexity based optimization together with temporal consistency gives
improved segmentation of fine detail such as the legs of the table in the Office dataset and
limbs of the person in the Juggler, Magician and Dance2 datasets in Figure 5.17 and 5.16.
This overcomes limitations of previous multi-view per frame segmentation.
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Fig. 5.16 Segmentation results for dynamic scenes on sequence of frames (Error against
ground-truth is highlighted in red).
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Fig. 5.17 Segmentation results for dynamic scenes (Error against ground-truth is highlighted
in red).

Fig. 5.18 State-of-the-art methods evaluated against the proposed method. MustafaICCV15
is the method from Chapter 4.



126 Temporally Coherent Scene Reconstruction

Fig. 5.19 Reconstruction result mesh comparison against state-of-the-art methods. Column
1st represents the initial dense model, Column 2nd − 5th: Meshes and Column 6th − 8th:
Difference meshes against proposed approach with color coded error in cms.

Dataset Guillemaut Mustafa Proposed
Magician 68.0±0.7 88.7±0.5 91.2 ± 0.2
Juggler 84.6±0.6 87.9±0.6 93.3 ± 0.2

Odzemok 90.1±0.3 89.9±0.3 91.8 ± 0.2
Dance2 99.2±0.5 99.4±0.2 99.5 ± 0.2
Office 99.3±0.4 99.0±0.3 99.4 ± 0.2

Dance3 98.6±0.3 99.0±0.2 99.0 ± 0.2

Table 5.3 Comparison of the segmentation accuracy against ground-truth for dynamic scenes
in %. Ground-truth is obtained by manually labelling the foreground for Office, Dance2 and
Odzemok dataset, and for other datasets ground-truth is available online.
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Fig. 5.20 Reconstruction result comparison with reference mesh and proposed for Dance3
benchmark dataset. Column 1st represents the initial dense model, Column 2nd −4th: Meshes,
Column 5th:Reference mesh available online, Column 6th −8th: Difference meshes against
reference approach with color coded error in cms and Column 9th −10th: Difference meshes
against proposed approach.

5.4.2 Reconstruction Evaluation

Reconstruction results obtained using the proposed method with parameters defined in Table
5.1 are compared against Mustafa[122], Guillemaut[63], and Furukawa [51] for dynamic
sequences. The state-of-the-art methods are illustrated in Figure 5.18. Furukawa [51] is a
per frame multi-view wide-baseline stereo approach which ranks highly on the Middlebury
benchmark [156] but does not refine the segmentation. Guillemaut is a joint refinement
method which requires background structure and calibration to obtain the solution and uses
temporal information in the framework. Mustafa is an automatic joint refinement method
and gives per frame reconstruction.

Figure 5.19 and 5.20 present qualitative and quantitative comparison of our method
with the state-of-the-art approaches. Comparison of reconstructions demonstrates that the
proposed method gives consistently more complete and accurate models. The color maps
highlight the quantitative differences in reconstruction. As far as we are aware no ground-truth
data exist for dynamic scene reconstruction from real multi-view video. In Figure 5.20 we
present a comparison with the reference mesh available with the Dance2 dataset reconstructed
using a visual hull approach. This comparison demonstrates improved reconstruction of fine
detail with the proposed technique.

In contrast to all previous approaches the proposed method gives temporally coherent
4D model reconstructions with dense surface correspondence over time. The introduction
of temporal coherence constrains the reconstruction in regions which are ambiguous on
a particular frame such as the right leg of the juggler in Figure 5.19 resulting in more
complete shape. Figure 5.21 and 5.22 shows complete scene reconstructions with 4D
models of multiple objects for various datasets. The Juggler and Magician sequences are
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Fig. 5.21 Complete scene reconstruction with 4D mesh sequence.

Fig. 5.22 Complete scene reconstruction for Dance1 dataset.
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Fig. 5.23 Reconstruction for moving cameras for the Odzemok and Juggler datasets.

reconstructed from moving hand-held cameras. Odzemok and Juggler are scenes with
significant movement in cameras. An example is shown in Figure 5.23 where camera moves
by approx 0.25 meters and 30 degrees for Juggler dataset and by 15 degrees for Odzemok
dataset.

The depth maps obtained using the proposed approach are compared against Mustafa
and Guillemaut in Figure 5.24. The depth map obtained using the proposed approach are
smoother with low reconstruction noise compared to the state-of-the-art methods.
Computational Complexity: Computation times for the proposed approach against other

Dataset Furukawa Guillemaut Mustafa Ours
Dance2 326 s 493 s 295 s 254 s

Magician 311 s 608 s 377 s 325 s
Odzemok 381 s 598 s 394 s 363 s

Office 339 s 533 s 347 s 291 s
Juggler 394 s 634 s 411 s 378 s
Dance3 312 s 432 s 323 s 278 s

Table 5.4 Comparison of computational efficiency for dynamic datasets (time in seconds (s))

methods are presented in Table 5.4 for all the datasets. The proposed approach to reconstruct
temporally coherent 4D models is comparable in computation time to per frame multi-view
reconstruction and gives a ∼50% reduction in computation cost compared to previous joint
segmentation and reconstruction approaches using a known background. This efficiency is
achieved through improved per frame initialization based on temporal propagation and the
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Fig. 5.24 Comparison of depth maps against existing methods for two indoor and two outdoor
benchmark datasets.

introduction of the geodesic star constraint in joint optimization.
Temporal coherence: A frame-to-frame alignment is obtained using the proposed approach
as shown in Figure 5.25 for Dance1 and Juggle dataset. The meshes of the dynamic object
in Frame 1 and Frame 9 are color coded in both the datasets and the color is propagated to
the next frame using the dense temporal coherence information. The color in different parts
of the object is retained to the next frame as seen from the figure. The proposed approach
obtains sequential temporal alignment which drifts with large movement in the object, hence
successive frames are shown in the figure. The limitations of sequential alignment will be
addressed in Chapter 6.

5.5 Limitations

As with previous dynamic scene reconstruction methods the proposed approach has a number
of limitations. The proposed approach may segment and reconstruct multiple objects which
are in close proximity as a single dynamic object. This is not a failure case, but it increases
the overall computational time for scene reconstruction. Secondly, persistent ambiguities in
appearance between objects will degrade the improvement achieved with temporal coherence.
Scenes with a large number of inter-occluding dynamic objects will degrade performance;
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Fig. 5.25 Frame-to-frame temporal alignment for Dance1 and Juggler dataset

the approach requires sufficient wide-baseline views to cover the scene. Thirdly, the proposed
technique does not handle textureless scenes due to the sparsity of 3D points and crowded
scenes due to the failure of the clustering algorithm used for initialization. Most of the
state-of-the-art methods in dynamic scene reconstruction suffer from this problem. Currently,
the colour models (GMMs) are not updated due to short length of the sequences and datasets
used, but this might suffer from failure due rapid rotations of dynamic objects. This problem
can be resolved by updating the color models in case of long sequences and complex motions.

5.6 Conclusion

This chapter presented a framework for temporally coherent 4D model reconstruction of
dynamic scenes from a set of wide-baseline moving cameras. The approach gives a complete
model of all static and dynamic non-rigid objects in the scene. Temporal coherence for
dynamic objects addresses limitations of previous per frame reconstruction giving improved
reconstruction and segmentation together with dense temporal surface correspondence for
dynamic objects. A sparse-to-dense approach is introduced to establish temporal corre-
spondence for non-rigid objects using robust sparse feature matching to initialize dense
optical flow. This provides an initial segmentation and reconstruction. Joint refinement of
object reconstruction and segmentation is then performed using a multi-view optimization
with a novel geodesic star convexity constraint that gives improved shape estimation and
is computationally efficient. Comparison against state-of-the-art techniques for multi-view
segmentation and reconstruction demonstrates significant improvement in performance for
complex scenes. The approach enables reconstruction of 4D models for complex scenes
which has not been demonstrated previously.
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The approach proposed in this chapter introduces frame to frame temporal coherence and
as an output we obtain a sequence of 3D shapes and sequential temporal coherence for the
moving objects. The method suffers from drift due to accumulation of errors in alignment
between successive frames and failure is observed due to large non-rigid motion over the
entire sequence. This problem will be handled in the subsequent Chapter 6.



Chapter 6

4D Match Trees for Non-rigid Surface
Alignment

6.1 Introduction

Temporally coherent reconstruction introduced in Chapter 5 introduces a sequential approach
to obtain temporally coherent to obtain a 4D video. Sequential alignment suffers from drift
due to accumulation of errors in alignment between successive frames and failure may occur
due to fast motion resulting in large non-rigid deformation between successive frames.

Recent advances in computer vision have demonstrated reconstruction of complex dynamic
real-world scenes from multiple view video or single view depth acquisition. These ap-
proaches typically produce an independent 3D scene model at each time instant with partial
and erroneous surface reconstruction for moving objects due to occlusion and inherent visual
ambiguity [77, 122, 170, 199]. For non-rigid objects, such as people with loose clothing or
animals, producing a temporally coherent 4D representation from partial surface reconstruc-
tions remains a challenging problem. In this chapter an approach to address the problems of
sequential alignment is presented by introducing a non-sequential global alignment across the
sequence to estimate the dense surface correspondence across all observations from multiple
view acquisition. A framework is proposed for global alignment of non-rigid shape observed
in one or more views with a moving camera assuming that a partial surface reconstruction
is available at each frame. The objective is to estimate the dense surface correspondence
across all observations from multiple view acquisition. An overview of the approach is
presented in Figure 6.1. Similarity evaluation between arbitrary pairs of frames is performed
using robust sparse feature matches. This allows a 4D Match Tree to be constructed which
represents the optimal alignment path for all observations across multiple sequences and
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views that minimizes the total dissimilarity between frames or non-rigid shape deformation.
4D alignment is then performed by traversing the 4D match tree using dense optical flow
initialized from the sparse inter-frame non-rigid shape correspondence. This approach allows
global alignment of partial surface reconstructions for complex dynamic scenes with multiple
interacting people and loose clothing.

Previous work on 4D modelling of complex dynamic objects has primarily focused on
acquisition under controlled conditions such as a multiple camera studio environment to
reliably reconstruct the complete object surface at each frame using shape-from-silhouette
and multi-view stereo[49, 80, 164]. Robust techniques have been introduced for temporal
alignment of the reconstructed non-rigid shape to obtain a 4D model based on tracking the
complete surface shape or volume [27, 28, 73] with impressive results for complex motion.
However, these approaches assume reconstruction of the full non-rigid object surface at each
time frame and do not easily extend to 4D alignment of partial surface reconstructions or
depth maps.

The wide-spread availability of low-cost depth sensors has motivated the development of
methods for temporal correspondence or alignment and 4D modelling from partial dynamic
surface observations [108, 129, 172, 188]. Recently multi-view performance capture gen-
erating temporally coherent reconstructions in real-time is proposed for multiple RGBD
cameras for indoor scenes [40]. Scene flow techniques [16, 187] typically estimate the
pairwise surface or volume correspondence between reconstructions at successive frames but
do not extend to 4D alignment or correspondence across complete sequences due to drift and
failure for rapid and complex motion. Existing feature matching techniques either work in
2D[168] or 3D[113], or for sparse [78, 203] or dense[195] points. However these methods
fail in the case of occlusion, large motions, background clutter, deformation, moving cameras
and appearance of new parts of objects. Recent work has introduced approaches, such as
DynamicFusion [129], for 4D modelling from depth image sequences integrating temporal
observations of non-rigid shape to resolve fine detail. Approaches to 4D modelling from
partial surface observations are currently limited to relatively simple isolated objects such as
the human face or upper-body and do not handle large non-rigid deformations such as loose
clothing.

In this chapter the 4D Match Tree is introduced for robust global alignment of partial
reconstructions of complex dynamic scenes. This enables the estimation of temporal surface
correspondence for non-rigid shape across all frames and views from moving cameras to
obtain a temporally coherent 4D representation of the scene. Contributions of this work
include:
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Fig. 6.1 4D Match Tree framework for global alignment of partial surface reconstructions

• Robust global 4D alignment of partial reconstructions of non-rigid shape from single
or multi-view sequences with moving cameras

• Sparse matching between wide-timeframe image pairs of non-rigid shape using a
segmentation based feature descriptor

• 4D Match Trees to represent the optimal non-sequential alignment path which mini-
mizes change in the observed shape

• Dense 4D surface correspondence using optical flow guided by sparse matching

6.2 Related Work

Temporal alignment of dynamic scene reconstruction is an area of extensive research in
computer vision. Temporally coherent mesh sequences finds application in 3D performance
capture and animation. Research on temporal coherent reconstruction can be broadly clas-
sified into two main categories: Sequential and Non-sequential. This section will review
different methods in these categories.
Sequential Alignment: Common approaches to surface reconstruction using stereo and
shape-from-silhouette for surface reconstruction [99, 123] do not produce temporally coher-
ent models for an entire sequence. These approaches align pairs of frames using existing
techniques like sparse or dense optical flow and scene flow. Alignment between individ-
ual frames of sequence sequence can be established using correspondence information
between frames. Methods have been proposed to obtain sparse [78, 168, 203] and dense
[16, 113, 195] correspondence between consecutive frames for entire sequence. Existing
sparse correspondence methods works sequentially on a frame-to-frame basis for single
view [168] or multi-view [78] and require a strong prior initialization [203]. Existing dense
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matching or scene flow methods [16, 187] require a strong prior which fails in the case
of large motion and moving cameras. Other methods are limited to RGBD data [195] or
narrow-timeframe [14, 113] for dynamic scenes.

Partial surface tracking methods for single view [151], from 3D scanner data [172] and
RGBD data [65, 129, 188] perform sequential alignment of the reconstructions using frame-
to-frame tracking. As an output a sequence of 3D shapes and instantaneous scene flows is
obtained for the moving surface. But there is no explicit temporal consistency in this data
because the shape and motion are typically sampled at each frame over a regular grid in the
3D space or image domain.

Other sequential methods proposed for 4D alignment of surface reconstructions assume
that a complete mesh of the dynamic object is available for the entire sequence [28, 178, 185].
The model is deformed over time by surface tracking according to multi-view image se-
quences which results in temporal consistency into the resulting sequence of model instances.
Sequential methods suffer from drift due to accumulation of errors in alignment between
successive frames and failure is observed due to large non-rigid motion.
Non-Sequential Alignment: Recently, surface alignment methods have tackled the drift
problem by non-sequential traversal of the input sequence. The template mesh is tracked
from the root of the tree along tree structure of paths leading to the leaf nodes. Each node
in the tree represents a frame in a sequence. Shorter chains of frame-to-frame alignments
compared to sequential traversal reduce the amount of drift and the impact of a complete
failure.

Non-sequential alignment has been proposed in [56] using structure-from-motion to
reduce drift in reconstruction [56]. The reconstruction is performed over sub-sequences of
the video and fused into a single scene reconstruction using a hierarchical tree structure.
Beeler et al. [20] presented an approach based on anchor frames to reduce drift for alignment
of reconstructed non-rigid face sequences. A patch based non-sequential surface alignment
algorithm is proposed for face sequences in [84]. Shape similarity tree is used for non-
sequential alignment across databases of multiple unstructured mesh sequences from non-
rigid surface capture [27]. Recently non-sequential approaches have been proposed to
temporally align unstructured meshes using motion graphs [141].

Although these methods provide a good alignment of the surfaces compared to sequential
approaches, they require complete surface reconstruction of every frame of the sequence.
Partial surfaces and incomplete geometries cannot be handled by these state-of-the-art
approaches. The problem of structured representation of dynamic surfaces from partial
surfaces from RGBD data was addressed by [108], but was limited to simple scenes. In
this chapter a non-sequential method to align partial surface reconstruction of dynamic
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objects is proposed for general dynamic outdoor and indoor scenes with large non-rigid
motions across sequences and views. Robust sparse wide-timeframe correspondence are
established to construct 4D Match Trees. Dense matching is performed on the 4D Match
Tree non-sequentially using the sparse matches as an initialization for optical flow to handle
large non-rigid motion and deformation across the sequence.

6.2.1 Summary of Previous Work

Existing methods have assumed complete surfaces [27, 28, 73] and/or sequential frame-by-
frame alignment [108, 129, 172, 188] resulting in drift and fast motion failure. Motivated by
robust non-sequential alignment of ‘shape similarity trees’[27] a non-sequential alignment
of partial surface reconstructions is proposed from one or more cameras. This requires a
new measure of similarity between partial surface reconstructions for any pair of frames
which is much more challenging than previous global shape descriptors[27]. To solve this we
demonstrate for the first time that sparse temporal feature matching between widely spaced
frames with large non-rigid deformations can be achieved using segmentation based feature
detection SFD previously introduced for wide-baseline spatial matching [126]. This enables
computation of surface overlap and shape similarity between any pair of frames used in ‘4D
match trees’ to initialize temporal alignment of partial surface reconstructions.

6.3 Methodology

The aim of this work is to obtain 4D temporally coherent models from partial surface
reconstructions of dynamic scenes. Our approach is motivated by previous non-sequential
approaches to surface alignment [27, 31, 33] which have been shown to achieve robust
4D alignment of complete surface reconstructions over multiple sequences with large non-
rigid deformations. These approaches use an intermediate tree structure to represent the
unaligned data based on a measure of shape similarity. This defines an optimal alignment
path which minimizes the total shape deformation. In this chapter we introduce the 4D
Match Tree to represent the similarity between unaligned partial surface reconstructions.
In contrast to previous work the similarity between any pair of frames is estimated from
wide-timeframe sparse feature matching between the images of the non-rigid shape and there
are no prior assumptions on the reconstructed surface accuracy or mesh structure. Sparse
correspondence gives a similarity measure which approximates the overlap and amount of
non-rigid deformation between images of the partial surface reconstructions at different
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time instants. This enables robust non-sequential alignment and initialization of dense 4D
correspondence across all frames.

6.3.1 Overview

An overview of the 4D Match Tree framework is presented in Figure 6.1. The input is
a partial surface reconstruction of a general dynamic scenes at each frame together with
multiple view images. Cameras may be static or moving and camera calibration is assumed
to be known or estimated together with the scene reconstruction [76, 123, 134, 170]. The
first step is to estimate sparse wide-timeframe SFD feature correspondence. The 4D Match
Tree is constructed as the minimum spanning tree based on the surface overlap and non-rigid
shape similarity between pairs of frames estimated from the sparse feature correspondence.
This tree defines an optimal path for alignment across all frames which minimizes the total
dissimilarity or shape deformation. Traversal of the 4D Match Tree from the root to leaf
nodes is performed to estimate dense 4D surface correspondence and obtain a temporally
coherent representation. Dense surface correspondence is estimated by performing optical
flow between each image pair initialized by the sparse feature correspondence. The 2D
optical flow correspondence is back-projected to the 3D partial surface reconstruction to
obtain a 4D temporally coherent representation. The approach is evaluated on publicly
available benchmark datasets for partial reconstructions of indoor and outdoor dynamic
scenes from static and moving cameras.

6.3.2 Robust Wide-timeframe Sparse Feature Correspondence

Sparse feature matching is performed between any pair of frames to obtain an initial estimate
of the surface correspondence. This is used to estimate the similarity between partial
observations of the non-rigid shape at different frames for construction of the 4D Match Tree
and subsequently to initialize dense correspondence between adjacent pairs of frames on
the tree branches. For partial reconstruction of non-rigid shape in general scenes we require
feature matching which is robust to both large shape deformation, change in viewpoint,
occlusion and errors in the reconstruction due to visual ambiguity. To overcome these
challenges sparse feature matching is performed in the 2D domain between image pairs and
projected onto the reconstructed 3D surface to obtain 3D matches. In the case of multiple
view images consistency is enforced across views at each time frame. The input is the
sequence of frames {q(i)}NQ

i=1 where NQ is the number of frames. Each frame q(i) consists of
a set of images from multiple viewpoints {v(c)}NV

c=1, where NV is the number of viewpoints
for each time instant (NV ≥ 1).
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Segmentation based Feature Detection for Wide-timeframe Matching: SFD features are
detected on the segmented dynamic object for each view c and the set of initial keypoints
are defined as: Xc = {xc

q0
,xc

q1
, ...,xc

qN
}. The SIFT descriptor[105] for each detected SFD

keypoint is used for wide-timeframe feature matching.

Wide-timeframe Matching: Once the features are extracted along with their descriptors
from two or more images, the next step is to establish some preliminary feature matches
between these images. There are potentially large non-rigid deformation and changes in
viewpoint/visibility between the initial frame and the current frame, hence robust matching
technique are used to establish correspondences. A match Sc,c

qi,q j is a feature correspondence
Sc

qi,q j
= (xc

qi
,xc

q j
), between xc

qi
and xc

q j
in view c at frames i and in view c at frame j re-

spectively. Nearest neighbour matching is used to establish matches between keypoints xc
qi

from the ith frame to candidate interest points xc
q j

in the jth frame. The ratio of the first to
second nearest neighbour descriptor matching score is used to eliminate ambiguous matches
(ratio < 0.85). This is followed by a symmetry test which employs the principal of for-
ward and backward match consistency to remove the erroneous correspondences. Two-way
matching is performed and inconsistent correspondences are eliminated. To further refine the
sparse matching and eliminate outliers a local spatial coherence in the matching is enforced.

We enforce multi-view consistency on the feature matches to ensures that correspondences
between any two views remain consistent for successive frames and views. Each match must
satisfying the constraint: ∥∥∥Sc,c

qi,q j
− (Sc,k

q j,q j
+Sk,k

qi,q j
+Sc,k

qi,qi
)
∥∥∥< ε (6.1)

(ε = 0.25). where c and k are two different viewpoints and Sc,c
qi,q j is the match at view c at

frame qi and at view c at frame q j. This gives a final set of sparse matches of the non-rigid
shape between frames which is used to calculate the similarity metric for the non-sequential
alignment of frames and initialize dense correspondence.

Several feature detection and matching approaches have been previously evaluated for
wide-baseline spatial matching in Chapter 3. In this work existing detectors are evaluated
against SFD for wide-timeframe matching between images of non-rigid shape on benchmark
indoor and outdoor datasets with large deformation in the dynamic object: Dance1[4DI];
Dance2, Cathedral, Odzemok,[cvs]; Magician and Juggler [15]. Figure 6.2 and Table 6.1
present results for SIFT[105], FAST[149] and SFD[126] feature detection. SFD, SIFT and
FAST feature detection is performed on all the views at each time instant in the sequence
(approximate length of 400). Wide-timeframe matching is performed using the algorithm
described above between all the frames such that frame 1 is matched to frame 2 to qNQ . The
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Fig. 6.2 Comparison of feature detectors for wide-timeframe matching on 3 datasets.
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Matches
Datasets Proposed Nebehay SIFT FAST
Dance3 416 249 124 57
Dance2 1233 863 493 96

Odzemok 916 687 366 82
Cathedral 665 465 301 77
Magician 392 293 141 53
Juggler 547 437 273 68

Table 6.1 Comparison of number of sparse wide-timeframe correspondences for all datasets
averaged over the entire sequence.

comparison is performed based on the following metric:

Match Metric =
1

N2
Q ×NV

NV

∑
c=1

NQ

∑
i=1

NQ

∑
j=1

∣∣∣sc
qi,q j

∣∣∣
such that i ̸= j

(6.2)

where
∣∣∣sc

qi,q j

∣∣∣ is the number of matches between view c of frame i and j. Table 6.1 shows
that a greater number of temporal feature matches are achieved using SFD than SIFT or
FAST detectors (rather than greater correct spatial matches [126]). This is significant
because it allows sparse matching between non-rigid surfaces where other detectors fail to
produce enough matches for initialization. SFD matches allow initialization of the dense
correspondence, any remaining false sparse matches are eliminated in dense matching. This
evaluation shows that SFD gives a relatively high number of correct matches. Results indicate
that SFD can successfully establish sparse correspondence for large non-rigid deformations
as well as changes in viewpoint with improved coverage and number of features.

6.3.3 4D Match Trees for Non-sequential Alignment

Our aim is to estimate dense correspondence for partial non-rigid surface reconstructions
across complete sequences to obtain a temporally coherent 4D representation. Previous
research has employed a tree structure to represent non-rigid shape of complete surfaces for
robust non-sequential alignment of sequences with large non-rigid deformations [27, 31, 33].
These approaches use a similarity metric taking into account both shape and motion of the
moving objects. However, previous similarity metrics are only applicable to objects with full
visibility in the scene and require complete geometry as a prior. In this work we have partial
reconstructions of complex dynamic scenes with partially visible objects with incomplete
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geometries, hence existing shape similarity measures and matrices cannot be used in our
work.

Inspired by the success of these approaches we propose the 4D Match Tree as an in-
termediate representation for alignment of partial non-rigid surface reconstructions. An
important difference of this approach is the use of an image based metric to estimate the
similarity in non-rigid shape between frames. 4D match trees handle partial surfaces and
use a sparse appearance similarity metric rather than global shape to build a tree, neither the
representation or alignment of [27] can apply to partial surfaces. Similarity between any pair
of frames is estimated from the sparse wide-timeframe feature matching. The 4D Match
Tree represents the optimal traversal path for global alignment of all frames as a minimum
spanning tree according to the similarity metric.

The space of all possible pairwise transitions between frames of the sequence is represented by
a dissimilarity matrix D of size N×N where both rows and columns correspond to individual
frames. The elements D(i, j) = d(qi,q j) are proportional to the cost of dissimilarity between
frames i and j. The matrix is symmetrical (d(qi,q j) = d(q j,qi)) and has zero diagonal
(d(qi,qi) = 0). For each dynamic object in a scene a graph Ω of possible frame-to-frame
matching is constructed with nodes for all frames qi. d(qi,q j) is the similarity metric between
two nodes and is computed using information from sparse correspondences and intersection
of silhouettes obtained from the back-projection of the surface reconstructions in each view.

Feature match metric: SFD features detected for each view at each frame are matched
between frames using all views. The feature match metric for non-sequential alignment Kc

i, j

between frame i and j for each view c is defined as the inlier ratio:

Kc
i, j =

|sc
qi,q j

|
Rc

i, j
(6.3)

where Rc
i, j is the total number of preliminary feature matches between frames i and j for

view c before constraining, and |sc
qi,q j

| is the number of matches between view c of frame i
and frame j obtained using the method explained in Section 6.3.2. The preliminary feature
matches and the refined correspondences after various tests. Kc

i, j is a measure of the overlap
between the visible surface for view c at frames i and j. The visible surface overlap is a
measure of their suitability for pairwise dense alignment.

Silhouette match metric: The partial surface reconstruction at each frame is back-projected
in all views to obtain silhouettes of the dynamic object. Silhouettes between two frames
for the same camera view c are aligned by an affine warp [41] as shown in Figure 6.3. The
aligned silhouette intersection area hc

i, j between frames i and j for view c is evaluated. The
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Fig. 6.3 Illustration of silhouette match metric: The input silhouette is the back-projection of
mesh at Frame 3 and the warped silhouette shows the affine warp of back-projected mesh at
Frame 4 w.r.t Frame 3. Union represents the addition of the two silhouettes from the top row
(Ac

3,4) and Intersection represents the common area of the two silhouettes (hc
3,4).

silhouette match metric Ic
i, j is defined as:

Ic
i, j =

hc
i, j

Ac
i, j

(6.4)

where Ac
i, j is the union of the area under the silhouette at frame i and j for view c. This gives

a measure of the shape similarity between observations of the non-rigid shape between pairs
of frames.
Similarity metric: The two metrics Ic

i, j and Kc
i, j are combined to calculate the dissimilarity

between frames used as graph edge-weights. The edge-weight d(qi,q j) for Ω is defined as:

d(qi,q j) =

 ∞ , if |sc
qi,q j

|< 0.006∗max(W,H)
1

∑
NV
c=1 Kc

i, j×Ic
i, j

, otherwise (6.5)

where W and H are the width and height of the input image. Note small values of d() indicates
a high similarity in feature matches between frames. If the number of matches between any
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Fig. 6.4 The similarity matrix for Odzemok and Juggler datasets

two frames is lower than 0.006∗max(W,H) the edge weight is set to infinity. Figure 6.4 and
6.10 present the dissimilarity matrix D between all pairs of frames for all sequences (red
indicates similar frames, blue dissimilar). The matrix off diagonal red areas indicate frames
with similar views of the non-rigid shape suitable for non-sequential alignment.

A minimum spanning tree(MST) is constructed over this graph to obtain the 4D Match
Tree. The MST defines the optimal path which minimizes the total non-rigid alignment
costs (based on similarity) to optimize across all frames. Hence to define the optimal shape
similarity MST is used rather than the shortest path tree (SPT) as it minimizes the total non-
rigid deformation. SPT will favour short paths with large inter-frame differences in shape
where disproportionally large errors in pairwise alignment may occur due to the non-linear
relationship between error and dissimilarity. In contrast the MST identifies paths which
favour small inter-frame differences in shape. Thus alignment based on the MST minimizes
the accumulation of errors in alignment. MST also orders similar frames closer to the root
with larger inter-frame changes towards the leaves of the tree, this limits the propagation of
errors in alignment between meshes with relatively large differences in shape to the ends of
the branches.

4D Match Tree: A fully connected graph is constructed using the dissimilarity metric as
edge-weights and the minimum spanning tree is evaluated [91, 142]. Optimal paths through
the sequence to every frame can be jointly optimized based on d(). The paths are represented
by a traversal tree T = (N ;P) with the nodes N = {Qi}

NQ
i=1. The edges P are undirected

and weighted by the dissimilarity pi, j = d(qi,q j) for pi, j ∈ P . The optimal tree O is defined
as the MST which minimizes the total cost of pairwise matching given by d:

O = arg min
∀T ∈Ω

(
∑

∀i, j∈T

d(qi,q j)

)
(6.6)
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Fig. 6.5 The partial 4D Match Tree and 4D alignment for Odzemok and Juggler datasets

This results in the 4D Match Tree O which minimizes the total dissimilarity between frames
due to non-rigid deformation and changes in surface visibility. Given O for a dynamic
object the dense correspondence is estimated for the entire sequence to obtain a temporally
coherent 4D representation of the surface shape. The tree root node Mroot is defined as the
node with minimum path length to all nodes in O . The minimum spanning tree can be
efficiently evaluated using established algorithms with order O(n logn) complexity where n
is the number of nodes in the graph Ω. The mesh at the root node is subsequently tracked to
other frames by traversing through the branches of the tree T towards the leaves. Partial
4D Match Trees for Juggler and Odzemok datasets are shown in Figure 6.5 on the left and
aligned 3D dense points for different frames are shown on the right with the corresponding
similarity matrix shown in Figure 6.4. To visualize the correspondence the tree root node
Mroot is color coded and the colors are propagated on various branches of the tree. The
color in various parts of the object remain consistent over time indicating the success of the
proposed method in estimating the surface correspondence.
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Fig. 6.6 Sparse to dense tracking using optical flow on series of frames for the Odzemok
dataset

6.3.4 Dense Non-rigid Alignment

Given the 4D Match Tree global alignment is performed by traversing the tree to estimate
dense correspondence between each pair of frames connected by an edge. Sparse SFD feature
matches are used to initialize the pairwise dense correspondence which is estimated using
optical flow [42] and the framework is shown in Figure 6.6. As illustrated in Figure 6.12
and 6.13 sparse features are non-uniformly distributed over the non-rigid surface. Hence,
optical flow alignment rather than interpolation is required to achieve dense correspondence
and eliminate any errors/inaccuracy in sparse matching. The sparse feature correspondences
provides a robust initialization of the optical flow for large non-rigid shape deformation.

To illustrate the dense correspondence over time a coloring scheme is used as shown
in Figure 6.7. A color wheel is used for the coding scheme such that the centroid of the
back-projected mask is mapped to the the center of the color wheel and each pixel represents
a color ID from the RGB gamut. The silhouette of the frame representing the tree root
node Mroot is color coded and the colors are propagated using the temporal dense matching
information towards the leaves of the 4D match tree.

The estimated dense correspondence is back projected to the 3D visible surface to
establish dense 4D correspondence between frames. In the case of multiple views dense
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Fig. 6.7 Color coding scheme of dense correspondence for the Odzemok dataset

Fig. 6.8 Dense matching using optical flow with and without the sparse match initialization
for the Odzemok dataset

4D correspondence is combined across views to obtain a consistent estimate and increase
surface coverage. Dense temporal correspondence is propagated to new surface regions
through the temporal propagation. As new surface regions appear they are incorporated into
the temporal matching using the sparse feature matching and dense optical flow. An example
of the propagated mask with and without sparse initialization for a single view is shown in
Figure 6.8. The large motion in the leg of the actor is correctly estimated with sparse match
initialization but fails without (shown by the red region indicating no correspondence).

Pairwise 4D dense surface correspondences are combined across the tree to obtain a
temporally coherent 4D alignment across all frames. An example is shown for the Odzemok
dataset in Figure 6.9 with sparse correspondence information in each frame. For visualization
features are color coded in one frame according to the color map as illustrated in Figure 6.7
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Fig. 6.9 Sparse feature matching and dense correspondence for the Odzemok dataset

Datasets Number of views
Sequence

length(frames) Resolution
Tree depth
(frames)

Tree depth
(%)

Dance3 8 static 200 780 × 582 65 33
Dance2 8 static 244 1920 × 1080 73 29
Odzemok 6 static, 2 moving 232 1920 × 1080 82 35
Cathedral 8 static 217 1920 × 1080 92 42
Magician 6 moving 400 960 × 544 127 32
Juggler 6 moving 400 960 × 544 104 26

Table 6.2 Characteristic properties of all datasets and their 4D Match Trees.

and this color is propagated to feature matches in the other frames. As observed the color ID
in various parts of the object remain consistent over time. Figure 6.5 presents two examples
of 4D aligned meshes resulting from the global alignment with the 4D match tree for various
frames in the sequence.

6.4 Results and Evaluation

The proposed approach is tested on a wide variety of indoor/outdoor scenes introduced in
section 6.3.1 including fast/challenging motion and no/rigid motion and the properties of
datasets are described in Table 6.2. Tree depth is defined as the maximum tree branch length
in frames as a percentage of the total number of frames in the length of the sequence. 4D
temporal alignment of partial reconstructions is achieved in all cases.
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Fig. 6.10 Similarity matrix for non-sequential alignment of various datasets

6.4.1 Sequential vs. Non-sequential alignment

4D Match Trees are constructed for all datasets using the method described in Section
6.3.3 and the similarity matrix for the datasets are shown in Figure 6.10. The maximum
length of branches in the 4D Match Tree for global alignment of each dataset is described
in Table 6.2. The longest alignment path for all sequences is < 50% of the total sequence
length leading to a significant reduction in the accumulation of errors due to drift in the
sequential alignment process. Non-rigid alignment is performed over the branches of the
tree to obtain a temporally consistent 4D representation for all datasets. Comparison of 4D
aligned surfaces obtained from the proposed non-sequential approach against sequential
tracking without the 4D Match tree is shown in Figure 6.11. Sequential tracking fails to
estimate the correct 4D alignment (Odzemok-64, Dance2-66, Cathedral-55) whereas the
non-sequential approach obtains consistent correspondence for all frames for sequences with
large non-rigid deformations. To illustrate the surface alignment a color map is applied to
the root mesh of the 4D Match tree and propagated to all frames based on the estimated
dense correspondence. The color map is consistently aligned across all frames for large
non-rigid motions of dynamic shapes in each dataset demonstrating qualitatively that the
global alignment achieves reliable correspondence compared to sequential tracking.

6.4.2 Sparse Wide-timeframe Correspondence

Sparse correspondences are obtained for the entire sequence using the traversal path in
the 4D Match tree from the root node towards the leaves. Results of the sparse and dense
4D correspondence are shown in 6.12 and 6.13. Sparse matches obtained using SFD are
evaluated against a state-of-the-art method for sparse correspondence Nebehay[128] in Figure
6.14. For fair comparison Nebehay is initialized with SFD features instead of FAST (which
produces a low number of matches). Table 6.1 shows that a greater number of temporal
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Fig. 6.11 Comparison of sequential and non-sequential alignment of all datasets for a
sequence of frames.
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Fig. 6.12 Sparse and dense 2D tracking color coded for all datasets.
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Fig. 6.13 Sparse and dense 2D tracking color coded for all datasets

feature matches are achieved using SFD than SIFT or FAST detectors. SFD matches are of
sufficient accuracy to initialize dense correspondence, false sparse matches are eliminated
in dense matching. Qualitative results are shown in Figure 6.14 and quantitative results are
shown in Table 6.3. Matches obtained using the proposed approach are approximately 50%
higher and consistent across frames compared to Nebehay[128] demonstrating the robustness
of the proposed wide-timeframe matching using SFD features.

Silhouette overlap error
Datasets Seq Prop. Deepflow SIFT Nebehay 1 view 2 views 4 views
Dance3 0.42 0.35 0.97 0.92 0.96 1.53 1.30 0.99
Dance2 0.83 0.63 1.36 1.43 1.38 2.13 1.78 1.47

Odzemok 0.98 0.89 2.82 2.59 2.69 4.35 3.66 2.76
Cathedral 0.83 0.69 1.14 1.10 1.29 1.92 1.65 1.09
Magician 1.07 0.86 3.43 3.22 3.77 5.46 4.67 3.18
Juggler 0.78 0.65 1.24 1.19 1.31 2.12 1.76 1.44

Table 6.3 Quantitative evaluation for sparse and dense correspondence for all the datasets;
Prop. represents proposed non-sequential approach.
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Fig. 6.14 Sparse tracking comparison for one indoor and one outdoor dataset.
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6.4.3 Dense 4D Correspondence

Dense correspondences are obtained on the 4D match tree and the color coded results are
shown in Figure 6.12 and 6.13 for all datasets. To illustrate the dense alignment the color
coding scheme shown in Figure 6.9 is applied to the silhouette of the dense mesh on the root
node for each view and propagated using the 4D Match Tree. The proposed approach is
qualitatively shown to propagate the correspondences reliably over the entire sequence for
complex dynamic scenes.

For comparative evaluation of dense matching we use:(a) SIFT features with the proposed
method in section 6.3 to obtain dense correspondence; (b) Sparse correspondence obtained
using Nebehay [128] with the proposed dense matching; and (c) a state-of-the-art dense
flow algorithm Deepflow [189] over the 4D Match Tree for each dataset. Qualitative results
against SIFT and Deepflow are shown in Figure 6.15 and 6.16. The propagated color map
using deep flow and SIFT based alignment does not remain consistent across the sequence as
compared to proposed method (red regions indicate correspondence failure).

For quantitative evaluation the silhouette overlap error(SOE) defined in equation 6.7 is
compared. Dense correspondence is propagated over time to create a mask for each image.
The propagated mask is overlapped with the silhouette of the projected partial surface at each
frame to evaluate the accuracy of the dense propagation. The error is defined as:

SOE =
1

NV ∗NQ

NQ

∑
i=1

NV

∑
c=1

Area of intersection
Area of back-projected mask

(6.7)

Evaluation against sequential and non-sequential Deepflow, SIFT and Nebehay are shown in
Table 6.3 for all datasets. As observed the silhouette overlap error is lowest for the proposed
SFD based non-sequential approach showing relatively high accuracy. The completeness of
the 3D points is also evaluated at each time instant as observed in Table 6.5 and 6.4:

completeness =
100

NV ∗NQ

NQ

∑
i=1

NV

∑
c=1

Number of 3D points propagated
Number of surface points visible from ‘c’ [79]

(6.8)

The proposed approach outperforms Deepflow, SIFT and Nebehay. As illustrated in Figure
6.12 and 6.13 sparse features are non-uniformly distributed. Optic flow alignment rather
than interpolation is required to achieve dense correspondence. Results illustrate consistent
matching over the entire sequences. The approach is tested on a wide variety of indoor and
outdoor scenes which include fast and challenging motion including no motion, rigid or non-
rigid motion. 4D temporal alignment of partial reconstructions is achieved in all cases. Ideally
evaluation would be made against ground-truth however currently no ground-truth is available
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Complete
-ness(%) Deepflow SIFT Nebehay

Proposed
(all views)

Dance3 81.56 83.28 82.55 98.22
Dance2 83.26 85.80 83.96 99.36
Odzemok 81.46 79.83 80.91 98.19
Cathedral 79.54 81.53 81.78 97.40
Magician 82.58 82.92 80.65 97.53
Juggler 79.09 80.11 81.33 97.89

Table 6.4 Evaluation of completeness of dense 3D correspondence averaged over the entire
sequence in %.

Sequential Proposed (Non-sequential)
All views 1 view 2 views 4 views All views

Dance3 91.52 60.78 71.65 81.30 98.22
Dance2 92.76 61.98 72.30 82.87 99.36
Odzemok 90.51 62.73 70.87 77.64 98.19
Cathedral 89.21 59.77 69.05 76.98 97.40
Magician 89.58 61.29 71.23 75.56 97.53
Juggler 91.89 59.54 68.40 78.81 97.89

Table 6.5 Evaluation of completeness of dense 3D correspondence averaged over the entire
sequence for different number of views in %.

for reconstructions of real non-rigid surfaces. As in previous work temporal alignment is
evaluated against other methods using quantitative silhouette overlap and completeness
measures Table 6.3, 6.4 and 6.5. This shows significant improvement in the resulting dense
4D correspondence.

6.4.4 Computational Complexity

The computational complexity of the proposed non-sequential alignment is evaluated against
sequential method and other state-of-the-art methods and the results are shown in Table 6.6
for all the datasets. The experiments are performed on a quad-core processor with a speed
of 1.8 GHz. The time required to obtain dense correspondence for the whole sequence is
calculated and is averaged over number of frames to obtain computation time per frame. As
observed the time complexity for the proposed method is comparable to other methods.
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Fig. 6.15 Dense tracking comparison for one indoor and one outdoor datasets captured with
static cameras.



6.4 Results and Evaluation 157

Fig. 6.16 Dense tracking comparison for one indoor dataset captured with only moving
hand-held cameras.
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Fig. 6.17 Single and Multi-view alignment comparison results for Odzemok dataset on 2D
images



6.4 Results and Evaluation 159

Fig. 6.18 Single and Multi-view alignment comparison results for Odzemok dataset in 3D
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Datasets Deepflow SIFT Nebehay Sequential Proposed Non-seq
Dance3 14.67 11.18 9.73 11.73 9.59
Dance2 15.85 11.50 10.08 12.67 9.84
Odzemok 17.12 12.54 10.98 13.83 10.77
Cathedral 16.76 12.78 11.12 13.41 10.97
Magician 10.48 7.99 7.006 8.38 6.85
Juggler 12.75 9.58 8.40 10.05 8.22

Table 6.6 Computational complexity per frame evaluation in seconds

6.4.5 Single vs Multi-view

The proposed 4D Match Tree global alignment method can be applied to single or multi-view
image sequence with partial surface reconstruction. Dense correspondence for the Odzemok
dataset using different numbers of views are compared in Figure 6.17. Dense 4D points
are also evaluated for different number of views and is shown in Figure 6.18. Quantitative
evaluation using SOE (Equation 6.7) and completeness (Equation 6.8) obtained from single,
2, 4 and all views for all datasets are presented in Table 6.3, 6.4 and 6.5. This shows that
even with a single view the 4D Match Tree achieves 60% completeness in surface matching.
As the number of views increase the restricted surface visibility improves. Completeness
increases with the number of views to > 97% for all views which is significantly higher than
other approaches.

6.5 Limitations:

The proposed method may fail in case of large deformation where there is high ambiguity in
the surface or texture of the non-rigid object. Fast spinning objects with loose clothing in the
scene lead to ambiguities in the optical flow due to the appearing/disappearing regions with
large deformation. The failure of optical flow results in the failure of dense correspondence.
Sparse temporal correspondence may fail in case of highly specular surfaces and objects with
uniform appearance which leads to failure of temporal alignment in the sequence. Currently,
the non-rigid alignment is not able to handle highly crowded dynamic environments like
existing methods where no reliable sparse matches can be obtained.

6.6 Conclusion

A framework has been presented for dense 4D global alignment of partial surface reconstruc-
tions from one or more camera views of complex dynamic scenes using 4D Match trees.
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4D Match Trees represent the similarity in the observed non-rigid surface shape across the
sequence. This enables non-sequential alignment of partial surface reconstructions across
a complete sequence to obtain dense surface correspondence across all frames. Robust
wide-timeframe correspondence between pairs of frames is estimated using SFD. This sparse
correspondence is used to estimate a frame-to-frame similarity in non-rigid shape and overlap
between frames. The information from the sparse temporal correspondence is combined
with the silhouette information of the non-rigid shape to estimate the similarity. A 4D
match tree is then reconstructed as the minimum spanning tree which represents the shortest
path in shape similarity space for alignment across all frames in the sequence. Dense 4D
temporal correspondence is estimated from the 4D Match tree across all frames using guided
optical flow. This is shown to provide improved robustness to large non-rigid deformation
compared to sequential and other state-of-the-art sparse and dense correspondence methods.
The proposed approach is evaluated on single and multi-view sequences of complex dynamic
scenes with large non-rigid deformations to obtain a temporally consistent 4D representation.
Results demonstrate completeness and accuracy of the resulting global 4D alignment over
existing methods. It would also be interesting in future to add camera ego motion and object
motion in the framework to improve the detection and alignment of dynamic parts in the
scene.





Chapter 7

Conclusion and Future work

7.1 Conclusion

The primary goal of this research is to develop a general solution to the problem of dy-
namic outdoor scene reconstruction from multiple moving camera videos without any prior
assumptions on scene structure or appearance. This is a challenging problem for state-of-the-
art computer vision techniques due to scene complexity, relatively large volume, variable
scene illumination and appearance. Existing methods require strong prior for general scene
reconstruction of such complex scenes.

In this thesis, first the literature in static and dynamic scene reconstruction is reviewed,
followed by a survey on each stage of the framework for general 4D scene reconstruction
from multi-view data captured using static and moving cameras. This is followed by introduc-
tion of novel algorithms in consecutive chapters to obtain general 4D scene reconstruction
from wide-baseline multi-view videos captured using a network of static or moving cam-
eras automatically. An improved feature detection method to increase the distribution and
coverage of features in the scene over time is proposed. This is an essential pre-requisite to
dynamic scene reconstruction without prior scene segmentation or known static backgrounds.

General dynamic scene reconstruction without pre-segmentation or background informa-
tion from multiple moving cameras is introduced by performing joint dense refinement on
an initial coarse geometric proxy to constrain the search. The proposed approach exploits
sparse feature matching for camera calibration and reconstruction of the static scene structure,
together with dense stereo for foreground reconstruction. To improve reconstruction accuracy
an approach to use temporal coherence and shape constraint in the optimization is proposed.
A novel formulation is developed integrating sparse 3D feature constraints with dense stereo
matching to obtain a complete reconstruction of both static and dynamic scene elements
for general scenes. The redundancy of static structures is exploited over time to increase
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computational efficiency by avoiding repeated reconstruction and improve resolution of detail
by integrating reconstruction over time.

4D match trees were proposed for non-sequential non-rigid alignment of partial surface
reconstructions from complex scenes to obtain 4D multi-layer segmentation and reconstruc-
tion. The approach is tested on a wide-range of general scenes with both hand-held and
static cameras with the aim of demonstrating wide applicability of the approach in potential
applications, such as film and broadcast production, which demand both temporal coherence
and high accuracy in the reconstruction. The following sections discuss the main novel
contributions of this research and suggestions for further investigation.

7.1.1 Segmentation based Feature Detection

Existing feature detectors give sparse non-uniform matches for complex dynamic scenes.
The sparsity of the correspondences leads to an uneven distribution of 3D points which
is often not sufficient to initialize wide-baseline stereo reconstruction. To address these
problems a novel feature detector for wide-baseline matching is proposed to obtain relatively
large number of uniformly distributed feature matches across the scene. This enables sparse
reconstruction of 3D scene structure from wide-baseline views [126]. The approach is based
on over-segmentation of the scene using the existing segmentation techniques and detecting
features at three or more region intersections. This approach is demonstrated to give stable
feature detection across wide-baseline views with an increased number of features and more
complete scene coverage than previous feature detectors used in wide-baseline applications.
A comprehensive performance evaluation against previous feature detectors (Harris, SIFT,
SURF, FAST, ORB, MSER, KAZE) in combination with widely used feature descriptors
(SIFT, BRIEF, ORB, SURF) demonstrates that the proposed segmentation based feature
detector SFD achieves a factor 3−10 times more wide-baseline features matches for a variety
of indoor and outdoor scenes. Quantitative evaluation of feature correspondence accuracy
demonstrates that SFD achieves a similar accuracy to previous wide-baseline methods with
a significantly larger number of matches. Application to stereo reconstruction from wide-
baseline camera views demonstrates that the SFD feature detector combined with SIFT
achieves a significant increase in the number or reconstructed points and more complete
scene coverage than SIFT detection and description.

More recently, there has been a trend towards feature detection with scale invariance.
Although SFD keypoint detection can handle slight variations in scale, for example wide-
baseline images with varying viewpoints, currently it is not scale invariant. A possible
direction for future work is to extend SFD to a multi-scale approach using bilateral de-
composition and performing hierarchical keypoint detection and multi-scale segmentations.
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Multi-scale SFD will further improve the quality of feature detection and to obtain robust
and reliable correspondences. Also it would be interesting to apply and evaluate multi-scale
feature detection to various applications like Object Recognition, Registration and Tracking.

7.1.2 Dense Reconstruction of Dynamic Scenes

State-of-the-art wide-baseline multi-view dynamic reconstruction algorithms in the literature
require prior knowledge to retrieve shape of dynamic objects in the scene. Chapter 4
introduces a novel method to allow general dynamic scene reconstruction without any prior
knowledge of scene structure, background or appearance. An unsupervised method to
initialize dynamic objects in the scene followed by joint reconstruction and segmentation of
the dynamic parts of the scene is proposed. The matches obtained from the SFD features are
used to obtain camera calibration and sparse reconstruction of the scene for each frame in the
sequence. The sparse reconstruction is clustered in 3D and dynamic objects are identified to
obtain an initial coarse reconstruction and segment the dynamic scene elements. The initial
coarse reconstruction is refined using a joint segmentation and shape refinement framework
automatically using the edge and photo-consistency information in the framework based on
graph-cut. Evaluation of the segmentation against other state-of-the-art methods and ground-
truth shows improved accuracy. Comparison of reconstruction against existing techniques
demonstrates improvement in quality and accuracy of the shape estimate of dynamic objects.
Computational complexity is comparable to the existing methods which require prior to
obtain the results.

The proposed approach enables joint segmentation and reconstruction of general dynamic
scenes without prior knowledge of scene structure of appearance. However, the approach has
two principal limitations which were addressed in subsequent work. Firstly errors occur in
reconstruction from frame-to-frame as each frame is reconstructed independently. Secondly
the per frame reconstruction results in a temporally incoherent output. To overcome these
limitations Chapter 5 introduces a general scene reconstruction approach which exploits
temporal coherence.

7.1.3 Temporally Coherent Scene Reconstruction

Temporal coherence is introduced in Chapter 5 to improve the segmentation and reconstruc-
tion quality of general dynamic scenes. A novel method is introduced to exploit temporal
coherence between consecutive frames to improve the quality of initial coarse reconstruction
which is refined using joint optimization of reconstruction and segmentation. The sparse
and dense temporal matching cues are integrated taking into account matching reliability
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to introduce temporal coherence. The inherent redundancy of static scene elements over
time is utilized to efficiently obtain multi-layer full scene reconstruction of complex dynamic
scenes to reduce the computational cost by avoiding repeated reconstruction. Complete scene
reconstruction is obtained for the first frame of the sequence and dynamic parts of the scene
were updated at each frame. Static scene elements were integrated over time based on the
previous reconstruction.

A novel shape constraint based on geodesic star convexity is introduced in the energy
minimization framework to obtain robust joint multi-view segmentation and reconstruction.
The shape of the dynamic object is restricted by the geodesic constraint which allows complex
shapes to be segmented. The geodesic shape constraint is automatically initialized for each
view from the initial segmentation and sparse temporal feature correspondences. Comparison
with existing methods for multi-view segmentation demonstrates improvements in recovery
of fine detail structure.

Evaluation shows that the quality of segmentation is comparable to the static state-of-the-
art multi-view segmentation techniques. Comparison against previous joint segmentation
and reconstruction refinement techniques demonstrates significant improvement in the qual-
ity and accuracy of reconstruction and segmentation for complex scenes. Reconstruction
evaluation against existing methods on challenging indoor and outdoor datasets indicates a
large improvement in the shape and resolution estimate of articulated objects. Complex non-
rigid shapes are successfully recovered using the proposed approach, which state-of-the-art
approaches are unable to retrieve. The computation time is comparable to the state-of-the-art
methods which require prior information and manual interaction.

However, a few issues still remain. A frame-to-frame temporal coherence is introduced in
the framework which gives rise to two problems: First, the alignment is sequential and hence
leads to drift due to accumulation of errors and second, large errors in alignment may occur
in the case of large motion deformation between consecutive frames which is propagated
until the end of the sequence. This limitation is handled in Chapter 6 by introduction of
non-sequential alignment of partial surface reconstructions from multiple cameras.

7.1.4 Robust 4D Scene Reconstruction

The ‘4D match trees’ is introduced in Chapter 6 to perform non-rigid non-sequential temporal
alignment between partial surfaces for any pair of frames in the sequence. The alignment
is based on a new measure of similarity exploiting temporal matching information. Sparse
temporal feature matching between widely spaced frames with large non-rigid deformations
is achieved using SFD previously introduced for wide-baseline spatial matching. This
enables computation of surface overlap and similarity between any pair of frames used in ‘4D
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match trees’ to initialize temporal alignment of partial surface reconstructions. 4D temporal
alignment is achieved for a wide variety of challenging indoor and outdoor scenes including
fast non-rigid and no or rigid motion cases. As in previous work temporal alignment is
evaluated against other methods using quantitative silhouette overlap and completeness
measures. This shows significant improvement in the resulting dense 4D correspondence.
The correspondence is consistent across the sequence and a significant improvement is
achieved over sequential matching.

7.1.5 Contributions

The overall goal of the research is to obtain robust 4D scene reconstruction of general
complex dynamic scenes from multiple moving cameras without any prior on scene structure,
background or appearance. The contributions are concluded below:

• A novel segmentation based feature detector is proposed for uniform, stable wide-
baseline and wide-timeframe matching.

• An automatic framework to initialize, reconstruct and segment general dynamic scenes
without any prior is introduced.

• Temporal coherence is exploited in the framework to improve the segmentation and
reconstruction quality and accuracy. Static redundancy is exploited over time to obtain
complete scene reconstruction and reduce complexity.

• Shape constraint based on geodesic star convexity is integrated in the joint reconstruc-
tion and segmentation refinement framework to improve the quality of the results.

• ‘4D Match Trees’ are introduced to perform non-sequential alignment of partial sur-
faces for robust 4D reconstruction of general dynamic scenes.

7.2 Future work

For future work, the proposed framework for general 4D scene reconstruction can be extended
in multiple directions:

• The system currently works for multi-view videos, but it is possible to extend the
system to a single moving camera. In the literature methods have been introduced
for dynamic scene reconstruction from a single video using non-rigid structure from
motion [151]. The same principle can be potentially applied to obtain the initial coarse
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reconstruction which can be tracked and optimized over time to obtain dense 4D
scene reconstruction from a single view. Initial coarse reconstruction can be obtained
from the sparse 3D points at each frame on the object. The joint segmentation and
reconstruction framework proposed in this work optimizes each view independently
which makes it easier to apply this framework for a single camera. Temporal coherence
can be introduced by using the trajectory of 3D points which can be estimated using
existing methods [168] followed by non-sequential alignment of these per frame partial
surfaces for the entire sequence.

• Joint semantic segmentation and reconstruction combines recognition with reconstruc-
tion to simultaneously identify the objects in the scene. State-of-the-art methods for
joint semantic segmentation and reconstruction only work for static scenes [66] and it
would be interesting to extend this concept to dynamic scenes by integrating recogni-
tion with the proposed framework. Semantic labels can be estimated for each pixel in
the multi-view images at each frame using existing fully convolution network based
semantic segmentation techniques[104]. The probabilities of each class at each pixel
can be integrated in the joint segmentation and reconstruction refinement framework
to obtain semantic segmentation and reconstruction of general dynamic scenes.

• Currently the system cannot handle crowded dynamic scenes with a large motion in
background and foreground. It would be interesting in future to handle more complex
and crowded dynamic scenes. In the literature methods have been proposed to build
3D models for dynamic scenes containing structures[76]. It would be interesting to
extend such methods to more general complex dynamic scenes with a large number of
people. Robust and efficient methods needs to be developed to identify and reconstruct
general dynamic scenes. Instead of joint reconstruction and segmentation proposed
in this work, only reconstruction can be optimized and temporal information can be
exploited to offer a more robust solution.

• Research can be extended to online video-rate reconstruction of general outdoor
dynamic scenes for onset reconstruction in the film industry to support directorial
decision. Methods have been proposed to obtain real-time reconstruction from single
camera and kinect data [130]. Online implementation for video-rate reconstruction
is possible by exploiting GPU implementation of key processing bottlenecks such as
stereo and feature matching in this work. Computational bottlenecks can be identified
and efficient and faster solutions need to be developed. Novel general representations
for dynamic scene structure can be considered for efficient storage and visualization.
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